Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

3-D Printing And Origami Techniques Combined In Development Of Self-Folding Medical Implants

October 24, 2016 By Delft University of Technology

Researchers at TU Delft have made flat surfaces that are 3D printed and then ‘taught’ how to self- fold later. The materials are potentially very well suited for all kinds of medical implants. They report on their findings in the October 24th edition of Materials Horizons which features this research on its cover.

Holy grail

Complete regeneration of functional tissues is the holy grail of tissue engineering and could revolutionise treatment of many diseases. Effective tissue regeneration often calls for multifunctional biomaterials. A lot of research is currently going in that field. One example is the large research project, led by Maastricht UMC and with TU Delft as one of the participants, in the field of ‘smart’ 3D printed implants for recovery of bone defects. The project started this month; if it’s successful, it will lead to faster recovery of patients and less operations. 

Surface

But the potential applications of 3D printed bio-implants is much bigger than only bone defects. Dr. Amir Zadpoor is one of the researchers at TU Delft in this field. He cooperates closely with hospitals like LUMC, UMC and AMC. 

‘Ideally, biomaterials should be optimised not only in terms of their 3D structure but also in terms of their surface nano-patterns’, says Zadpoor. ‘3D printing enables us to create very complex 3D structures, but the access to the surface is very limited during the 3D printing process. Nanolithography techniques enable generation of very complex surface nano-patterns but generally only on flat surfaces. There was no way of combining arbitrarily complex 3D structures with arbitrarily complex surface nano-patterns.’ 

Origami

Zadpoor looks to the ancient Japanese art of paper folding (origami) to solve this deadlock. In this approach, flat surfaces are first 3D printed in a particular way to teach them how to self-fold. The flat surface is then decorated with complex nano-patterns. Finally, the self-folding mechanism is activated (for instance by a change in temperature) to enable folding of the flat sheet and the formation of complex 3D structures.

 

Zadpoor: “Nature uses various activation mechanisms to program complex transformations in the shape and functionality of living organisms. Inspired by such natural events, our team, including researchers S. Janbaz and R. Hedayati, developed initially flat (two-dimensional) programmable materials that, when triggered by a stimulus such as temperature, could self-transform their shape into a complex three-dimensional geometry”.

Shape shifting

‘We used different arrangements of bi- and multi-layers of a shape memory polymer (SMP) and hyperelastic polymers to program four basic modes of shape-shifting including self-rolling, self-twisting (self-helixing), combined self-rolling and self-wrinkling, and wave-like strips.’ Some of the modes of shape-shifting were then integrated into other two-dimensional constructs to obtain self-twisting DNA-inspired structures, programmed pattern development in cellular solids, self-folding origami, and self-organizing fibers. 

‘This work is just one little step towards better medical implants’, says Zadpoor, ‘but we are definitely making exciting progress.’    

Related Articles Read More >

A portrait of ResMed President and COO Rob Douglas
ResMed finds a solution to semiconductor shortage, as well as some humor in it
Johnson & Johnson Office of Digital Innovation Leader Peter Schulam
Imagining the future of cloud-connected medical devices with Johnson & Johnson leaders
Withings Body Scan
Withings plans launch for Body Scan smart scale platform
BinaxNow COVID-19 Ag Card
Time recognizes Abbott offerings among this year’s 100 best inventions

DeviceTalks Weekly.

June 24, 2022
How innovative design, commercial strategy is building Cala Trio’s bioelectronic medicine market
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech