Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

3D-Printed Biomaterials For Bone Tissue Engineering

August 15, 2018 By Thamarasee Jeewandara, Medical Xpress

When skeletal defects are unable to heal on their own, bone tissue engineering (BTE), a developing field in orthopedics can combine materials science, tissue engineering and regenerative medicine to facilitate bone repair. Materials scientists aim to engineer an ideal biomaterial that can mimic natural bone with cost-effective manufacturing techniques to provide a framework that offers support and biodegrades as new bone forms. Since applications in BTE to restore large bone defects are yet to cross over from the laboratory bench to clinical practice, the field is active with burgeoning research efforts and pioneering technology.

Cost-effective three-dimensional (3D) printing (additive manufacturing) combines economical techniques to create scaffolds with bioinks. Bioengineers at the Pennsylvania State University recently developed a composite ink made of three materials to 3D print porous, bone-like constructs. The core materials, polycaprolactone (PCL) and poly (D,L-lactic-co-glycolide) acid (PLGA), are two of the most commonly used synthetic, biocompatible biomaterials in BTE. Now published in the Journal of Materials Research, the materials showed biologically favorable interactions in the laboratory, followed by positive outcomes of bone regeneration in an animal model in vivo.

Since bone is a complex structure, Moncal et al. developed a bioink made of biocompatible PCL, PLGA and hydroxyapatite (HAps) particles, combining the properties of bone-like mechanical strength, biodegradation and guided reparative growth (osteoconduction) for assisted natural bone repair. They then engineered a new custom-designed mechanical extrusion system, which was mounted on the Multi-Arm Bioprinter (MABP), previously developed by the same group, to manufacture the 3D constructs.

The bone tissue constructs were designed using Mach3 software and printed thereafter. In the study, PCL/PLGA/HAp composite constructs were compared experimentally with PCL-only constructs to understand how changing the chemistry of materials contributed to bone-like mimicry.

The mechanical system was developed in-house to extrude PCL and the composite ink, using a metal nozzle and a mechanical extruder unit mounted on the MABP. An advanced temperature/process controller was used to maintain the temperature at the end of the metal nozzle tip, alongside a K-type thermocouple feedback sensor placed at the lower end of the barrel to regulate temperature during polymer deposition.

Microarchitectures of 3D printed porous constructs were comparatively observed with scanning electron microscopy and tested thereafter for their chemical, mechanical and structural properties in the lab. The material’s ability to support biological cells for proliferation was tested with cell-material interactions using bone marrow stem cells, visualized with immunostaining and fluorescent microscopy.

The capacity to differentiate into osteoblasts (bone-forming cells) during osteogenesis (bone development) was observed with RT-PCR by identifying specific genes of interest expressed by the cells during osteogenesis. The genes of interest included runt-related transcription factor 2 (RUNX2), osteocalcin (OCN also known as BGLAP) and alkaline phosphatase (ALP), associated with osteoblast differentiation.

The 3D composite material (PCL/PLGA/HAp) showed improved cell proliferation and increased gene expression during bone regeneration compared with 3D PCL. Comparatively improved osteogenic capacity of the 3D composites was also validated after implantation in an animal model in vivo. The researchers observed increased rates of newly formed mineralized bone tissue after eight weeks with histology techniques.

The observation was credited to the material’s composition, since greater surface wettability (hydrophilicity) and ingrained osteoconductive factors assisted better cell growth on the composite, compared to hydrophobic PCL by itself.

Extensive in vitro and in vivo investigations demonstrated that the composite ink developed in the lab for 3D bioprinting was a promising material for BTE applications. The described biomimetic, cell and gene activating BTE materials are third-generation bone repair materials and remain an active area of research. Materials scientists are also focused on engineering and improving next-generation BTE materials that integrate the fourth dimension of time into 3D constructs and in smart polymers to create four-dimensional polymers (4D) for BTE applications in orthopedics.

Related Articles Read More >

Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices
Outcome-Based Technologies' Excyabir CryoKnee
DJO’s Enovis buys orthopedic bracing assets of Outcome-Based Technologies
A portrait of Keri Mattox, Zimmer Biomet's chief communications and administration officer
Zimmer Biomet adds ESG and CEO visibility to executive’s duties
A portrait of Zimmer Biomet CEO Bryan Hanson
Zimmer Biomet narrowly avoids shareholder rebuke on executive pay

DeviceTalks Weekly.

July 1, 2022
Boston Scientific CEO Mike Mahoney on building a corporate culture that drives high growth results
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech