Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

3D-Printed ‘Hyperelastic Bone’ May Help Generate New Bone for Skull Reconstruction

May 20, 2019 By Wolters Kluwer Health

Defects of the skull and facial bones can pose difficult challenges for plastic and reconstructive surgeons. A synthetic material called hyperelastic bone—readily produced by 3D-printing—could offer a powerful new tool for use in reconstructing skull defects, reports a study in the May issue of Plastic and Reconstructive Surgery.

The experimental material accelerates bone regeneration across skull defects in rats, according to initial results by Ramille N. Shah, PhD, and colleagues of Northwestern University and University of Illinois Health, Chicago. The researchers write, “Hyperelastic bone has significant potential to be translated to craniofacial reconstructive surgery, where the need for cost-effective bone replacement grafts is enormous.”

Promising New 3D-Printed Bone Replacement for Skull Reconstruction

The researchers report initial experiments with hyperelastic bone in rats with surgically created defects of the top of the skull. The surgically created defects were of a “critical size” unlikely to heal on their own — similar to those seen in patients who have undergone surgery for brain tumors.

Hyperelastic bone is a “3D-printed synthetic scaffold,” consisting mainly of bone mineral (hydroxyapatite) plus a widely used, biocompatible material (polyglycolic acid). Hyperelastic bone consists of an intricate latticework, designed to support the growth and regeneration of new bone. It[TO1] can be quickly and inexpensively produced using current 3D printing hardware platforms and is malleable enough to be press-fit or cut into shape during surgery.

In the experiments, some cranial defects were reconstructed using hyperelastic bone and others using the animal’s own (autologous) bone. Autologous bone is the preferred material for reconstructing bone defects, but can be difficult to obtain — requiring bone to be taken from a “donor site” elsewhere in the body — and sometimes isn’t available at all. In other animals, reconstruction was performed using a scaffold made of polyglycolic acid only, without bone mineral.

The 3D-printed hyperelastic bone provided good bone regeneration. On follow-up CT scans, hyperelastic bone was about 74 percent effective after eight weeks and 65 percent at 12 weeks, compared to autologous bone. In contrast, defects treated with the polyglycolic acid scaffold showed little new bone formation.

Microscopic examination showed that the hyperelastic bone scaffold was gradually surrounded first by fibrous tissue, then by new bone cells. Over time, the scaffold would be gradually replaced completely by new bone, incorporating the implanted bone mineral.

“Hyperelastic bone has significant potential to be translated to craniofacial reconstructive surgery, where the need for cost-effective bone replacement grafts is enormous,” Dr. Shah and colleagues conclude. With further development, they believe this 3D-printed material may provide a valuable alternative to autologous bone and commercially available bone substitutes.

“Our study underscores the promising translational potential of this novel strategy for tissue engineering applications, particularly bone regeneration,” the researchers add. They emphasize that further experimental studies will be needed to confirm the use of hyperelastic bone for specific types of craniofacial reconstruction

Related Articles Read More >

The Weiss-Aug MedPharma logo.
Weiss-Aug reorganizes to launch Weiss-Aug MedPharma
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
These are the logos of Demetra Holdings and GetSet Surgical.
Demetra Holding acquires majority stake in Swiss-based GetSet Surgical
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe