Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

3D Structure of Enzyme Opens Path to New Drug Design in Brain Disease

March 28, 2017 By Phys.org

Drugs can be designed based on the 3D structure of this human enzyme. (Credit: University of York)

Researchers at the University of York and Simon Fraser University, Canada, revealed the 3D structure of an enzyme that could provide a crucial step forward in treating neurodegenerative diseases.

Previous work from these research teams investigated a class of diseases called tauopathies, which occur when tau proteins spontaneously group together in the brain. It is often associated with Alzheimer’s and other neurodegenerative diseases.

Research has shown that the tau protein can be modified by a sugar, natural to the body, called O-GlcNAc. This sugar can stabilise the protein to block it from clumping together and may thereby prevent disease. The human enzyme O-GlcNAc-hydrolase, however, is responsible for the removal of this crucial sugar from the protein, making it a prime target in preventing the progression of tau-related dementias.

In order to understand how this clumping of tau could be prevented or reduced by increasing O-GlcNAc, scientists at York investigated the structure of the human enzyme to reveal how it is organised to function in this way.

New breakthroughs

Professor Gideon Davies, from the University’s Department of Chemistry, says, “Inhibiting the O-GlcNAc-hydrolase enzyme allows scientists to stabilise tau. We have solved the three-dimensional structure of the enzyme in order to aid structure-based drug design. The unusual and complex organisation should help us in the search for new drugs to treat neurodegenerative diseases. Drugs can be designed based on the 3D structure of this human enzyme, which will ultimately pave the way for new breakthroughs in the treatment of diseases such as Alzheimer’s.”

Professor David Vocadlo, from Simon Fraser University, says, “In addition to serving as a blueprint for the development of antagonists, this long sought after structure reveals a surprising architecture that may lead to improved understanding of how this important enzyme is regulated in cells. Such insights could lead to more targeted therapeutics for various diseases.”

Key to a lock

Dr. Rosa Sancho, Head of Research at Alzheimer’s Research UK who part-funded this work, says, “Drug discovery is a bit like designing a key to fit a lock, however, it is important to know the shape of the lock you are working with. This new study describes in detail the shape of O-GlcNAc-hydrolase and paves the way for the design of drugs that can fit this lock. Future studies will need to explore whether drugs that can inhibit this enzyme hold promise for treating Alzheimer’s disease and other dementias, but this is an important step in the right direction.

“With 850,000 people in the UK currently living with dementia and no new treatments licensed in the last decade, there is an urgent need for new and innovative strategies to tackle the condition head on.”

Related Articles Read More >

How this device broke through the blood-brain barrier
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
An illustration showing the Artedrone Sasha thrombectomy catheter approaching a blood clot.
This microrobot system is designed to float inside a stroke patient for autonomous thrombectomy
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe