Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

A New System to Detect Spinal Deformity

November 29, 2016 By Hokkaido University

Hokkaido University researchers have developed a symmetry-recognition system for the surface of the human back that can three-dimensionally detect the early stages of idiopathic scoliosis, a type of spinal deformity, without the help of a specialist doctor.

Individuals with idiopathic scoliosis, many of whom are pubescent girls, suffer from serious curvature of the spine. The disease has a characteristically high affliction rate, affecting one in 50 people.

Early detection of the progressive ailment is regarded as essential for treatment, as it is effective to wear a special brace when the spine is curved by 30 degrees or more. In recent years, genetic study of the disease has progressed, boosting the development of treatments.

Top: images of a case in which a patient is to be treated with a brace. The thoracic vertebra curves by 34 degrees. Bottom: images of a case in which a patient requires surgery. The thoracic vertebra curves by 60 degrees. (a): a three-dimensional image of the back’s surface (b): based on image (a), the system evaluates the degree to which a patient’s back deviates from the ideal symmetry for a human back within a few seconds. The larger the deviation, the deeper the color. (c): comparison to X-ray photos. Deviations in the image correspond with curvatures. (Credit: Hokkaido University/Noa Co., Ltd.)

In accordance with stipulations in the Japanese School Health and Safety Act, elementary and junior high schools conduct physical check-ups aimed at detecting idiopathic scoliosis. However, the law leaves it up to the respective medical associations or education boards in each municipality to decide how to conduct the checks, giving rise to regional gaps in the detection rate. Another related problem is the burden placed on doctors who have to examine a large number of students within a limited time frame.

To address these issues, two scientists from different fields of research, Associate Professor Hideki Sudo of Hokkaido University’s Graduate School of Medicine and Professor Satoshi Kanai of the Graduate School of Information Science and Technology developed a system to evaluate the level of asymmetry on the surface of the back when measured three-dimensionally.

In a collaboration between the university and Noa Co., Ltd., the researchers developed a prototype device for detecting idiopathic scoliosis. The device is expected to go through clinical testing so that it can be used in clinics and for physical examinations at schools.

The device three-dimensionally scans multiple points on the back, enabling the evaluation of the back’s symmetry from any angle in a few seconds. In this way, it is expected to enable speedy and accurate detections of idiopathic scoliosis. In the future, the researchers hope to gain government approval for the clinical use of their device.

Related Articles Read More >

TE Connectivity opens global medical device prototyping center in Ireland
Prix Galien USA 2022 nominees
The 24 best medical device innovations of 2022
A portrait of Ellen Roche, MIT School of Engineering associate professor
New implant design prevents scar tissue without drugs, MIT says
UMN artificial blood vessel clinical trial
Minnesota researchers awarded $3.7M grant for artificial, bioengineered blood vessel clinical trial

DeviceTalks Weekly.

August 12, 2022
DTW – Medtronic’s Mauri brings years of patient care to top clinical, regulatory, scientific post
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech