Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

A New Way to Monitor Induced Comas

November 1, 2013 By Anne Trafton, MIT News Office

Automated system could offer better control of patients’ brain states.

Emery Brown (Credit: Bryce Vickmark)After suffering a traumatic brain injury, patients are often placed in a coma to give the brain time to heal and allow dangerous swelling to dissipate. These comas, which are induced with anesthesia drugs, can last for days. During that time, nurses must closely monitor patients to make sure their brains are at the right level of sedation—a process that MIT’s Emery Brown describes as “totally inefficient.”

“Someone has to be constantly coming back and checking on the patient, so that you can hold the brain in a fixed state. Why not build a controller to do that?” says Brown, the Edward Hood Taplin Professor of Medical Engineering in MIT’s Institute for Medical Engineering and Science, who is also an anesthesiologist at Massachusetts General Hospital (MGH) and a professor of health sciences and technology at MIT.

Brown and colleagues at MGH have now developed a computerized system that can track patients’ brain activity and automatically adjust drug dosages to maintain the correct state. They have tested the system—which could also help patients who suffer from severe epileptic seizures—in rats and are now planning to begin human trials.

Maryam Shanechi, a former MIT grad student who is now an assistant professor at Cornell University, is the lead author of the paper describing the computerized system in the Oct. 31 online edition of the journal PLoS Computational Biology.

Tracking the Brain
Brown and his colleagues have previously analyzed the electrical waves produced by the brain in different states of activity. Each state—awake, asleep, sedated, anesthetized and so on—has a distinctive electroencephalogram (EEG) pattern.

When patients are in a medically induced coma, the brain is quiet for up to several seconds at a time, punctuated by short bursts of activity. This pattern, known as burst suppression, allows the brain to conserve vital energy during times of trauma.

As a patient enters an induced coma, the doctor or nurse controlling the infusion of anesthesia drugs tries to aim for a particular number of “bursts per screen” as the EEG pattern streams across the monitor. This pattern has to be maintained for hours or days at a time.

“If ever there were a time to try to build an autopilot, this is the perfect time,” says Brown, who is a professor in MIT’s Department of Brain and Cognitive Sciences. “Imagine that you’re going to fly for two days and I’m going to give you a very specific course to maintain over long periods of time, but I still want you to keep your hand on the stick to fly the plane. It just wouldn’t make sense.”

To achieve automated control, Brown and colleagues built a brain-machine interface — a direct communication pathway between the brain and an external device that typically assists human cognitive, sensory or motor functions. In this case, the device—an EEG system, a drug-infusion pump, a computer and a control algorithm—uses the anesthesia drug propofol to maintain the brain at a target level of burst suppression.

The system is a feedback loop that adjusts the drug dosage in real time based on EEG burst-suppression patterns. The control algorithm interprets the rat’s EEG, calculates how much drug is in the brain, and adjusts the amount of propofol infused into the animal second-by-second.

The controller can increase the depth of a coma almost instantaneously, which would be impossible for a human to do accurately by hand. The system could also be programmed to bring a patient out of an induced coma periodically so doctors could perform neurological tests, Brown says.

This type of system could take much of the guesswork out of patient care, says Sydney Cash, an associate professor of neurology at Harvard Medical School.

“Much of what we do in medicine is making educated guesses as to what’s best for the patient at any given time,” says Cash, who was not part of the research team. “This approach introduces a methodology where doctors and nurses don’t need to guess, but can rely on a computer to figure out—in much more detail and in a time-efficient fashion—how much drug to give.”

Monitoring Anesthesia
Brown believes that this approach could easily be extended to control other brain states, including general anesthesia, because each level of brain activity has its own distinctive EEG signature.

“If you can quantitatively analyze each state’s signature in real time and you have some notion of how the drug moves through the brain to generate those states, then you can build a controller,” he says.

There are currently no devices approved by the U.S. Food and Drug Administration (FDA) to control general anesthesia or induced coma. However, the FDA has recently approved a device that controls sedation not using EEG readings.

The MIT and MGH researchers are now preparing applications to the FDA to test the controller in humans.

The research was funded by the National Institutes of Health through a Pioneer Award and a Transformative Research Award.

Related Articles Read More >

A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
UC Berkeley and UC San Diego researchers develop way to restore speech using BCIs (1)
Researchers use BCIs to restore speech in people with paralysis
An image of Abbott's Infinity deep brain stimulation (DBS) implants and leads.
As Abbott studies DBS for depression, what might be next?
Brain EEG rendering from peterschreiber.media on Adobe Stock
Hidden signatures in EEGs could reduce epilepsy misdiagnoses
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe