Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

A Second Life for MRI Magnets

May 22, 2015 By Argonne National Laboratory

When it comes to magnets, a doctor’s trash is a physicist’s treasure.

Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory recently acquired two decommissioned magnets from magnetic resonance imaging (MRI) scanners from hospitals in Minnesota and California that will find a new home as proving grounds for instruments used in high-energy and nuclear physics experiments.

The two new magnets have a strength of 4 Tesla, not as strong as the newest generation of MRI magnets but ideal for benchmarking experiments that test instruments for the g minus 2 (“g-2”) muon experiment currently being assembled at the DOE’s Fermi National Accelerator Laboratory. The Muon g-2 experiment will use Fermilab’s powerful accelerators to explore the interactions of muons, which are short-lived particles, with a strong magnetic field in “empty” space.

The experiment relies on highly precise measurements of the strong magnetic field; the magnets will greatly aid these measurements. “As we prepare for the g-2 experiment, we have to have a suitable test magnet to very carefully calibrate our magnetic field measuring probes ahead of time,” said Argonne high-energy physicist Peter Winter, who was recently awarded a $2.5 million, five-year DOE Early Career Research Program Award.

To measure and calibrate the custom-built probes, Winter and his colleagues needed a magnet that could provide not only a strong field but one that was uniform and stable. Solenoid MRI magnets like the ones Argonne has acquired are perfect for that purpose.

In addition to their strength, these repurposed magnets offer another notable advantage: originally used as a human patient MRI magnet, they have a wide bore so that large detector components can easily fit inside.

“By using these new magnets, we can fit the entire half-meter-long probe system in the magnet, which will give us a very precise measurement of the intensity of the magnetic fields,” Winter said. “These MRI magnets produce a very stable, homogenous magnetic field that is ideal and crucial for getting technology ready for the larger g-2 experiment.”

Because the g-2 experiment is so large and requires precise calibration, researchers need to firmly understand any potential interactions between the strong magnetic field and the equipment. “We can now validate any equipment in our test magnet, which is incredibly important because it saves time and money when the time comes to actually do the experiment,” Winter said.

Because the Minnesota magnet was sitting in storage for a few years, Argonne needed only to pay the shipping costs – a few thousand dollars – to acquire it.  By comparison, buying a new magnet to do the benchmarking would have cost close to $1 million.

Even the more involved transport of the second San Francisco magnet was still cost-efficient. “We’re saving taxpayer money by finding new and different uses for technology that may not have been intended for physics in the first place,” Winter said. “In the future, we will use this new test magnet facility to develop and test large detector prototypes that need to operate in high magnetic fields. We are open for other users across the entire lab to facilitate research that requires strong magnetic fields in a large bore magnet.”

The second magnet will become a component in a new spectrometer for studying nuclear reactions that occur in supernovae. This new spectrometer is proposed for the future Facility for Rare Isotope Beams (FRIB), a DOE user facility under construction at Michigan State University. “The acquisition of this magnet would allow us to construct a state-of-the-art spectrometer that uses the radioactive beams from FRIB at minimal cost,” said Argonne nuclear physicist Birger Back.

Both magnets have already been delivered to Argonne, and Winter and his team have begun to set up the magnet in the high-bay area of building 366.  He expects validation experiments to begin soon.

The acquisition of the magnets was funded by Argonne’s Physical Sciences and Engineering (PSE) directorate, along with the High Energy Physics and Physics Divisions. The Veterans Health Research Institute (NCIRE) supported the refill of the magnet with liquid helium prior to the transport. Because of the importance, the g-2 project at Fermilab also supported this transfer.

Related Articles Read More >

Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age
A Medtronic HVAD pump opened up to show the inner workings
Medtronic investigates HVAD pump welds after patient deaths
Galien Foundation 2022 nominees
18 of the world’s most innovative medical technologies

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech