Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

A Solar Cell You Can Put in The Wash

September 19, 2017 By Phys.org

A photo of the ultra-thin organic solar cells. (Credit: RIKEN)

Scientists from RIKEN and the University of Tokyo have developed a new type of ultra-thin photovoltaic device, coated on both sides with stretchable and waterproof films, which can continue to provide electricity from sunlight even after being soaked in water or being stretched and compressed.

The work, published in Nature Energy, could open the way to wearable solar cells, which will provide power to devices such as health monitors incorporated into clothing. One of the requirements of the Internet of Things—referring to a world where devices of all sorts are connected to the Internet—is the development of power sources for a host of devices, including devices that can be worn on the body. According to Takao Someya, the leader of the research group, these could include sensors that record heartbeats and body temperature, for example, providing early warning of medical problems. In the past, attempts have been made to create photovoltaics that could be incorporated into textiles, but typically they lacked at least one of the important properties—long-term stability in both air and water, energy efficiency, and robustness including resistance to deformation—that are key to successful devices.

For the present work, the members of the research group developed extremely thin and flexible organic photovoltaic cells, based on a material called PNTz4T, which they had developed in earlier work. They deposited the device in an inverse architecture, which they had previously developed, onto a 1-um-thick parylene film. The ultra-thin device was then placed onto acrylic-based elastomer and the top side of the device was coated with an identical elastomer, giving it a coating on both sides to prevent water infiltration.. The elastomer, while allowing light to enter, prevented water and air from leaking into the cells, making them more long-lasting than previous experiments.

The researchers then subjected the device to a variety of tests, finding first that it had a strong energy efficiency of 7.9 percent, producing a current of 7.86 milliwatts per square centimeter, as the current density was 13.8 milliamperes per square centimeter at 0.57 volts, based on a simulated sunlight of 100 milliwatts per square centimeter. To test its resistance to water, they soaked it in water for two hours, and found that the efficiency decreased by just 5.4 percent. And to test the durability, they subjected it to compression, and found that after compressing by nearly half for twenty cycles while placing drops of water on it, it still had 80 percent of the original efficiency.

According to Kenjiro Fukuda of the RIKEN Center for Emergent Matter Science, “We were very gratified to find that our device has great environmental stability while simultaneously having a good efficiency and mechanical robustness. We very much hope that these washable, lightweight and stretchable organic photovoltaics will open a new avenue for use as a long-term power source system for wearable sensors and other devices.”

Related Articles Read More >

Benefits of thermoplastic polyurethane films for wearable devices
Wyss Institute researchers develop coating to extend lifespan of implantable biosensors
A photo of Medtronic's LINQ II implantable cardiac monitor.
Lessons from Medtronic’s Define AFib study of implantable cardiac monitors
FDA logo
FDA releases draft guidance for pulse oximeter accuracy
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe