Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Advanced MRI Technology to Track Cells in the Body

March 15, 2016 By University of California - San Diego

The need to non-invasively “see” and track cells in living persons is indisputable – a boon to both research and development of future therapies. Emerging treatments using stem cells and immune cells are poised to most benefit from cell tracking, which would visualize their behavior in the body after delivery. Clinicians require such data to speed these cell treatments to patients.

Writing in the March 14 online issue of Nature Materials, researchers at University of California, San Diego School of Medicine describe a new, highly sensitive chemical probe that tags cells for detection by magnetic resonance imaging (MRI).

Specifically, a research team led by senior author Eric T. Ahrens, PhD, professor of radiology, and Roger Tsien, PhD, professor of pharmacology, chemistry and biochemistry (whose work with fluorescent proteins earned him a share of the 2008 Nobel Prize in chemistry) have synthesized a new cell labeling probe using fluorine-19, the stable isotope of the element fluorine. Agents are formulated as a “nanoemulsion” that contains microscopic droplets of an inert fluorine-based agent that is taken up by cells of interest. The fluorine agent in cells is directly detected by MRI, enabling one to observe movement of cell populations.

“Fluorine-19 tracer agents are an emerging approach that produces positive signal hot-spot images with no background signal because there’s virtually no fluorine concentration in tissues,” said Ahrens. “We have made a major leap in sensitivity. We have figured out how to dissolve and encapsulate metals inside the fluorine-based droplets. The net effect is to greatly amp up the MRI signal.”

Ahrens, Tsien and Alex Kislukhin, a postdoctoral scholar in their labs, increased the sensitivity of the fluorine MRI agent by creating a new imaging medium that combines highly fluorinated nanoemulsions with the magnetic properties of metals – a technique that increases the visibility of fluorine by MRI. Unexpectedly and serendipitously, they also discovered that iron is particularly effective at enhancing the fluorine MRI signal.

“The chemist’s iron hand has moved the field of biomedical imaging forward,” said Ahrens. “To the best of our knowledge, iron has never been considered as an enhancer of 19F MRI signals, yet our analysis shows that iron is fundamentally magnetically superior to all other metal ions for enhancing fluorine MRI.”

Added Tsien: “It’s a wonderful coincidence that fluorine MRI benefits most from iron, which is biologically friendlier and cheaper than gadolinium, still the favorite for proton MRI.”

While more research remains to be done, Ahrens said 19F MRI aided by iron represents a significant advance in tracking cells in many emerging therapeutic areas, such as immunotherapy, stem cells and treating inflammation.

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe