Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Altering Stem Cells Perception of Tissue Stiffness May Help Treat Musculoskeletal Disorders

August 25, 2016 By University of Pennsylvania School of Medicine

A new biomaterial can be used to study how and when stem cells sense the mechanics of their surrounding environment, found a team led by Robert Mauck, Ph.D., the Mary Black Ralston Professor for Education and Research in Orthopaedic Surgery, in the Perelman School of Medicine at the University of Pennsylvania. With further development, this biomaterial could be used to control when immature stem cells differentiate into more specialized cells for regenerative and tissue-engineering-based therapies. Their study appears as an advance online publication in Nature Materials this month.

During early development in an embryo, the progenitor cells of many types of musculoskeletal tissue start out in close contact to each other and over time transition into an organized network of individual cells surrounded by an extracellular matrix (ECM). This matrix is made up of polysaccharides and fibrous proteins secreted by cells, providing structural and biochemical support to the cells within.

Throughout the course of embryo development, the ECM gets stiffer due to increased amounts of matrix material and crosslinking, eventually guiding stem cells to develop into more specialized cells across various tissue types. It also acts as a medium through which mechanical information is transmitted to cells (such as forces generated with such normal activities as walking or running).

Mauck and his colleagues developed a new biomaterial that allows scientists to systematically study how the cell-to-cell interactions present in early development combined with cell-ECM interactions to regulate stem-cell differentiation.

Cells can sense the inherent stiffness of their surrounding environment, which plays an important role in guiding stem-cell differentiation and generating the mechanical properties of tissues. During musculoskeletal development, a cell’s surrounding environment gradually transitions from one that is rich in cell-to-cell interactions to one that is dominated by cell-extracellular matrix interactions. However, how these stem cells balance their interpretation of seeing one another and seeing this increasingly stiff matrix are not well understood.

During early development in an embryo, the progenitor cells of many types of musculoskeletal tissue start out in close contact to each other and over time transition into an organized network of individual cells surrounded by an extracellular matrix. Throughout the course of embryo development, it gets stiffer due to increased amounts of matrix material and crosslinking. (Credit: The lab of Robert Mauck, Perelman School of Medicine, University of Pennsylvania)

To examine the response of stem cells to different mechanical and material inputs, Mauck and colleagues looked at protein complexes that move to the nucleus in response to these signals, called YAP/TAZ proteins. Once in the nucleus, these proteins help guide the differentiation of stem cells to become the specialized cells that reside in various tissue types.

The team showed that this new biomaterial platform can enable scientists to study how the proteins involved in cell-cell contact (N-cadherins) are able to mask stem cell inputs from the accumulating ECM (fibronectins) across a range of tissue stiffness.

The cell-to-cell cues presented by the biomaterial reduced the ability of stem cells to pull on the ECM molecules, which in turn reduced the amount of YAP/TAZ molecules present in the nuclei of developing cells. This resulted in an altered interpretation of ECM stiffness by the cells and ultimately how these cells differentiated.

“We want to learn how we can trick these cells to think that they’re in a softer environment,” said Mauck. This could enable scientists and clinicians to keep stem cells in an uncommitted state longer during regenerative therapies, so as to increase cell number and keep them from committing to a certain, final fate, which may increase their physiological impact when implanted.

“Our long-term goal is to be able to intercept how a cell determines the stiffness of its surrounding environment,” said first author Brian D. Cosgrove, a doctoral student in the Mauck lab. “For example, we ideally want to put stem cells into stiff materials for cartilage repair that would withstand the forces present in everyday life, but then the stem cells preferentially turn into bone and other fibrous tissue types. We need to find new ways to trick them into thinking they’re in the correct environment so they will remain specialized cartilage cells.”

This fine control of what a precursor cell ultimately senses and the resulting tissue it produces may be important for treating disorders, such as out-of-place bone growth called heterotopic ossification.

Related Articles Read More >

Nanoscopic imaging showing human keratinocyte-matrix interaction.
These smart materials are key to advancing regenerative medicine
A series of before-and-after brain scans showing improvement in long COVID patients after hyperbaric oxygen therapy
Long COVID study finds potential in hyperbaric oxygen therapy
Rockwell Experience Center opens at Dean Kamen’s Advanced Regenerative Manufacturing Institute
What is microscale 3D printing? Lessons learned from Mayo Clinic
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe