Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Alzheimer’s Beginnings Prove to Be a Sticky Situation

September 12, 2016 By Michigan State University

Laser technology has revealed a common trait of Alzheimer’s disease—a sticky situation that could lead to new targets for medicinal treatments.

Alzheimer’s statistics are always staggering. The neurodegenerative disease affects an estimated 5 million Americans, one in three seniors dies with Alzheimer’s or a form of dementia, it claims more lives than breast and prostate cancers combined, and its incidence is rising.

To help fight this deadly disease, Lisa Lapidus, Michigan State University professor of physics and astronomy, has found that peptides, or strings of amino acids, related to Alzheimer’s wiggle at dangerous speeds prior to clumping or forming the plaques commonly associated with Alzheimer’s. 

MSU’s Lisa Lapidus uses lasers to reveal a common trait of Alzheimer’s beginnings. (Credit: G.L. Kohuth)

“Strings of 40 amino acids are the ones most-commonly found in healthy individuals, but strings of 42 are much more likely to clump,” said Lapidus, who published the results in the current issue of ChemPhysChem. “We found that the peptides’ wiggle speeds, the step before aggregation, was five times slower for the longer strings, which leaves plenty of time to stick together rather than wiggle out of the way.”

This so-called “wiggle” precedes clumping, or aggregating, which is the first step of neurological disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Lapidus pioneered the use of lasers to study the speed of protein reconfiguration before aggregation. 

If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow. If reconfiguration is the same speed, however, aggregation is fast. She calls the telltale wiggle that she discovered the “dangerous middle.” 

“The dangerous middle is the speed in which clumping happens fastest,” Lapidus said. “But we were able to identify some ways that we can bump that speed into a safer zone.”

Lapidus and her team of MSU scientists, including Srabasti Acharya, Kinshuk Srivastava and Sureshbabu Nagarajan, found that increasing pH levels kept the amino acids wiggling at fast, safe speeds. Also, a naturally occurring molecule, curcumin (from the spice turmeric), kept the peptide out of the dangerous middle.

While this is not a viable drug candidate because it does not easily cross the blood-brain barrier, the filter that controls what chemicals reach the brain, they do provide strong leads that could lead to medicinal breakthroughs.

Along with new drug targets, Lapidus’ research provides a potential model of early detection. By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains. Policing amino acids for wiggling at dangerous speeds could tip off doctors long before the patient begins to suffer from the disease.

This research was funded by the National Institutes of Health.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

(Source: EurekAlert!)

Related Articles Read More >

A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe