Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

An All-on-Chip Method for Testing Neutrophil Chemotaxis

May 20, 2016 By World Scientific

A team of researchers from the University of Manitoba in collaboration with local clinical scientists in Winnipeg, Canada, have developed a new method for rapid neutrophil chemotaxis test directly from a small drop of whole blood using a microfluidic system. Although many microfluidic devices have been developed for quantitative immune cell migration studies and relevant clinical applications, cell isolation from blood in most studies still relied on specialized facilities. The process is labor-intensive, time-consuming, requires specialized skills, and often causes cell pre-activation. Direct isolation of specific blood cell types of interest from whole blood followed by cell migration experiment all on the same microfluidic device is highly desirable. In this direction, the present method provides easy-to-use microfluidic devices for efficient on-chip magnetic negative neutrophil isolation from a small drop of whole blood using reagents from a new commercial kit followed by neutrophil chemotaxis assay all on the same device. Furthermore, the integrated standalone microfluidic gradient generator and cell-docking structure improve the control of cell migration experiment, which enables easier and more accurate chemotaxis analysis. The whole experiment can be done in less than 25 minutes. The method was successfully validated by testing neutrophil chemotaxis to both purified chemoattractant (i.e. fMLP) and clinical samples (sputum from patients with Chronic Obstructive Pulmonary Disease). This report appears in a forthcoming issue of the journal TECHNOLOGY.

Illustration of the all-on-chip method for neutrophil chemotaxis analysis using the microfluidic device. Ab-MP: antibody cocktail-magnetic particles. (Credit: TECHNOLOGY)

“The traditional cell preparation method significantly limits the efficiency of neutrophil chemotaxis experiment and makes it difficult to run the test in clinical settings. The developed all-on-chip method effectively removed this bottleneck. Furthermore, the integrated cell-docking feature permits cell pre-alignment in the device before chemotaxis experiment, and therefore it can provide instant chemotaxis test result at the end of the experiment based on the final positions of the cells,” says Professor Francis Lin in the Department of Physics and Astronomy at the University of Manitoba and Principal Investigator of this study.

“One of the most attractive features of our technology is the minimal requirement for assay operation, which is very important for its practical use in life science labs and clinical labs. In addition to neutrophils that we used for proof-of-concept, there is a growing potential to extend our approach to test the migration of other cell types from blood upon availability of the corresponding magnetic cell isolation kits.” says Dr. Jiandong Wu, a MITACS Postdoc Fellow in the Lin lab and the leading author of this paper. “The technology can be broadly applied” added by Professor Lin, “We plan to further apply it to study the migration of different immune cell types, cancer cells and stem cells. We already demonstrated that this approach can be effectively used for testing clinical COPD samples. We are confident that this approach can be generally useful for research and clinical applications in other relevant diseases. We will further develop this technology and aim to establish broad collaborations with cell migration researchers and industrial partners to enhance the applicability of this technology.”

Find more information on the study here.

Related Articles Read More >

A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe