Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Aortic aneurysms associated with defects in many regions of genome

November 17, 2010 By Baylor College of Medicine

HOUSTON — (November 18, 2010) —
When the aorta, the major artery arising from the heart, becomes enlarged and weakened, the condition (called a thoracic aortic aneurysm) is life threatening. The situation becomes acute when wall of the aorta begins to tear (a dissection) or ruptures.

Understanding the genetic component of this dangerous disorder might help doctors identify people at risk and treat them before the weakened artery endangers their lives. In a recent study, researchers at Baylor College of Medicine and The University of Texas Health Science Center at Houston (UT Health) found 47 regions of the genome where portions of genetic material were deleted or duplicated, which can affect genes and the proteins they produce. These are called copy number variations.

New paradigm of mutations

“For a long time, we concentrated on single mutations that would, by themselves, cause disease,” said Dr. Siddharth Prakash, assistant professor of molecular and human genetics at BCM and first author of a report that appears online today in the American Journal of Human Genetics. “Now we have come up with a new paradigm where we see different types of mutations – rare mutations. Instead of one gene, dozens of genes may be involved in the disease and each gene variant may account for a few cases. Together, they affect a common biological mechanism that causes the disease.

“As a class of defects, they may be as great or greater a cause of disease than the single gene defects,” he said. “In these variants, there may be only one copy of a gene instead of the normal two. Or there may be three copies. That could result in more or less of a protein or it could disrupt production of a protein. This can be passed from generation to generation.”

Dr. John W. Belmont, professor molecular and human genetics at BCM, and Dr. Dianna M. Milewicz, professor of medicine at UT Health, are senior authors of the report. Prakash spoke about the findings at the recent American Heart Association Scientific Sessions in Chicago.

Genome-wide analysis

In this study, Prakash and his colleagues from BCM and UT Health did a genome-wide analysis of thoracic aortic aneurysms and dissections in 418 patients. They identified 47 copy number variant regions that were unique to patients with these aneurysms. Closer scrutiny of the genes involved in the copy number variants showed that they regulate smooth muscle adhesion or ability to contract. They also interact with smooth muscle specific form of alpha-actin and beta-myosin, both proteins important in muscle formation and activity. When altered, they are known to cause familial from of thoracic aortic aneurysms and dissections.

A comparison of patients with familial forms of the aneurysm disorder to patients with sporadic forms showed that those with the familial forms had more copy number variations. However, the research shows that rare copy number variations that disrupt smooth muscle adhesion or contraction contribute to both forms of the disorder.

Cellular pathways

Looking for copy number variants that affect cellular pathways may provide answers not found in genome-wide association studies, said Prakash.

“A pathway is a biological process governed by a set of gene that work together to accomplish a single purpose such as growing the cell larger, cell movement or cell adhesion,” he said. “Considering the pathway allows us to make sense of disparate hits across the genome. If these variants target a common mechanism, then you should target that pathway rather than an individual gene.”

In some cases, a single gene may be the master regulator of a pathway and, thus, make the ideal target, he said. Using gene chips or microarrays, physicians could evaluate pathways and identify aneurysms in those people who have variants in the appropriate pathway.

These aneurysms are usually without symptoms until they rupture or begin to tear.

“If we could find a way to catch the problem before a dissection or rupture, we could make a profound difference in a disorder that kills more than 8,000 people each year in the United States,” said Prakash.

Others who took part in this work include Drs. Scott A. LeMaire, Ludivine Russell, Joseph S. Coselli, Molly S. Bray and Suzanne M. Leal, all of BCM and Drs. Dong-Chuan Guo, Ellen S. Regalado, Hossein Golabbakhsh, Ralph J. Johnson, Hazim J. Safi, Anthony L. Estrera and Dianna M. Milewicz of UT Health.

Funding for this work came from the National Institutes of Health, the Vivian L. Smith Foundation, the TexGen Foundation, the Doris Duke Foundaiton and the Thoracic Surgery Foundation for Research and Education.

SOURCE

Related Articles Read More >

A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe