Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Artificial Intelligence Detects Presence of Viruses

January 10, 2019 By UCLA Engineering Institute for Technology Advancement

Many biosensing applications rely on characterization of specific analytes such as proteins, viruses and bacteria, among many other targets, which can be accomplished by using micro- or nano-scale particles. In such biosensors, these particles are coated with a surface chemistry that makes them stick to the target analyte forming clusters in response. The higher the target analyte concentration is, the larger the number of clusters gets. Therefore, monitoring and characterizing these particle clusters can tell us if the target analyte is present in a sample and in what concentration. Current methods to perform such an analysis are limited in that they are either capable of only a coarse readout or rely on expensive and bulky microscopes, which limit their applicability to address different biosensing needs, especially in resource limited environments.

To overcome the shortcomings of the existing solutions, UCLA researchers have developed a rapid and automated biosensing method based on holography coupled with deep learning – currently, one of the most promising and successfully used methods in artificial intelligence, AI. In this system, all the particle clusters and individual micro-particles in a sample are first imaged in 3-D as holograms, all at the same time, and over a very large sample area of more than 20 mm2, more than ten-fold larger than the imaging area of a standard optical microscope. Next, a trained deep neural network processes these holograms and rapidly reconstructs them into images of clusters similar to those that could be obtained with a standard scanning microscope, but doing this much faster and for a significantly larger sample volume. During this process, all the particle clusters at the micro-scale (revealing the presence of the target analyte) are automatically counted with a sensitivity similar to a laboratory-grade microscope.

As a proof of concept, UCLA researchers successfully demonstrated the application of this deep learning-based biosensing approach to detect herpes simplex virus (HSV) and achieved a detection limit of ~ five viruses per micro-liter, providing a clinically relevant level of sensitivity for HSV detection. HSV is one of the most widespread viral infections that is estimated to have affected more than 50 percent of the adults in the US.

This work was published as a cover article in ACS Photonics, a journal of the American Chemical Society. The research was led by Dr. Aydogan Ozcan, an associate director of the California NanoSystems Institute (CNSI) and the Chancellor’s Professor of electrical and computer engineering at the UCLA Henry Samueli School of Engineering and Applied Science, along with Yichen Wu, a graduate student, and Aniruddha Ray, a postdoctoral scholar, at the UCLA electrical and computer engineering department.

“Our work demonstrates an automated, inexpensive platform for rapid read-out and quantification of a wide variety of particle clustering-based biosensors. This unique capability enabled by deep learning will help democratize biosensing instrumentation, making them suitable for wide-scale use even in developing countries,” said Ozcan.

Related Articles Read More >

Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices
A Medtronic HVAD pump opened up to show the inner workings
FDA designates new Medtronic HVAD pump implant recall as Class I
Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age

DeviceTalks Weekly.

June 24, 2022
How innovative design, commercial strategy is building Cala Trio’s bioelectronic medicine market
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech