Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Artificial Intelligence Tool Vastly Scales Up Alzheimer’s Research

May 16, 2019 By UC Davis

Researchers at UC Davis and UC San Francisco have found a way to teach a computer to precisely detect one of the hallmarks of Alzheimer’s disease in human brain tissue, delivering a proof of concept for a machine-learning approach to distinguishing critical markers of the disease.

Amyloid plaques are clumps of protein fragments in the brains of people with Alzheimer’s disease that destroy nerve cell connections. Much like the way Facebook recognizes faces based on captured images, the machine learning tool developed by a team of University of California scientists can “see” if a sample of brain tissue has one type of amyloid plaque or another, and do it very quickly.

The findings, published May 15 in Nature Communications, suggest that machine learning can augment the expertise and analysis of an expert neuropathologist. The tool allows them to analyze thousands of times more data and ask new questions that would not be possible with the limited data processing capabilities of even the most highly trained human experts.

“We still need the pathologist,” said Brittany N. Dugger, Ph.D., an assistant professor in the UC Davis Department of Pathology and Laboratory Medicine at UC Davis and lead author of the study. “This is a tool, like a keyboard is for writing. As keyboards have aided in writing workflows, digital pathology paired with machine learning can aid with neuropathology workflows.”

In this study, she partnered with Michael J. Keiser, Ph.D., an assistant professor in UCSF’s Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, to determine if they could teach a computer to automate the laborious process of identifying and analyzing tiny amyloid plaques of various types in large slices of autopsied human brain tissue. For this job, Keiser and his team designed a “convolutional neural network” (CNN), a computer program designed to recognize patterns based on thousands of human-labeled examples.

To create enough training examples to teach the CNN algorithm how Dugger analyzes brain tissue, the UCSF team worked with her to devise a method that allowed her to rapidly annotate or label tens of thousands of images from a collection half a million close-up images of tissue from 43 healthy and diseased brain samples.

Like a computer dating service that allows users to swipe left or right to label someone’s photo “hot” or “not,” they developed a web platform that allowed Dugger to look one-at-a-time at highly zoomed-in regions of potential plaques and quickly label what she saw there. This digital pathology tool—which researchers called “blob or not”—allowed Dugger to annotate more than 70,000 “blobs,” or plaque candidates, at a rate of about 2,000 images per hour.

The UCSF team used this database of tens of thousands of labeled example images to train their CNN machine-learning algorithm to identify different types of brain changes seen in Alzheimer’s disease. That includes discriminating between so-called cored and diffuse plaques and identifying abnormalities in blood vessels. The researchers showed that their algorithm could process an entire whole-brain slice slide with 98.7 percent accuracy, with speed only limited by the number of computer processors they used. (In the current study they used a single graphics card like those used by home gamers.)

The team then performed rigorous tests of the computer’s identification skills to make sure its analysis was biologically valid.

“It’s notoriously hard to know what a machine-learning algorithm is actually doing under the hood, but we can open the black box and ask it to show us why it made its predictions,” Keiser explained.

Keiser emphasized that the machine learning tool is no better at identifying plaques than Dugger, the neuropathologist who trained the computer to find them in the first place.

“But it’s tireless and scalable,” he said. “It’s a co-pilot, a force multiplier that extends the scope of what we can accomplish and lets us ask questions we never would have attempted manually. For example, we can look for rare plaques in unexpected places that could give us important clues about the course of the disease.

To promote use of the tool, the researchers have made it and the study data publicly available online. This has already generated interactions with other researchers who have evaluated the data and the algorithms in their own labs. In the future, the researchers hope that such algorithms will become a standard part of neuropathology research, trained to help scientists analyze vast amounts of data, tirelessly seeking out patterns that could unlock new insights into causes and potential treatments for the disease.

“If we can better characterize what we are seeing, this could provide further insights into the diversity of dementia,” Dugger said. “It opens the door to precision medicine for dementias.”

She added, “These projects are phenomenal examples of cross-disciplinary translational science; neuropathologists, a statistician, a clinician, and engineers coming together, forming a dialogue and working together to solve a problem.”

Related Articles Read More >

Carnegie Mellon University EEG-based BCI to control robotic hand
Non-invasive BCI enables robotic hand dexterity
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
How this device broke through the blood-brain barrier
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe