Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Bioengineers Use Adhesion to Combine Silicones and Organic Materials

July 10, 2013 By The Institute for Genomic Biology

Introductory chemistry students learn that oil and water repel each other. So do other hydrophobic substances, which carry no electric charge, and hydrophilic substances, which carry an electric charge that allows them to mix with water.

In a study reported in the July 1, 2013 Angewandte Chemie, a group of University of Illinois bioengineers have found a way to strongly adhere hydrogels to hydrophobic silicone substrates, an innovation that provides a valuable new tool for microscale biotechnology. The article reporting the work was highlighted by the editors as a “Hot Paper” in Soft Material Chemistry.

Microscale biotechnologies, including cell culture platforms and biochips, have important applications in genomics, tissue engineering, and many other areas of biology. Silicone polymers are often used as a component material in these technologies because of their advantageous properties: silicones are inert, elastic, biocompatible, and easy to work with.

One major drawback of this type of material in biological applications is that surfaces formed by silicones are extremely hydrophobic. These surfaces therefore prohibit easy flow of aqueous solutions and prevent the binding of some biomolecules, while promoting undesired binding of others. Chemical modifications or coatings can be used to make the surfaces hydrophilic, but the results produced by these treatments are temporary.

The Illinois study, led by Hyunjoon Kong, Assistant Professor of Chemical and Biomolecular Engineering and member of the Regenerative Biology and Tissue Engineering research theme at the Institute for Genomic Biology, addressed this problem. The group worked to develop a method to permanently modify a silicone polymer surface. Kong’s group sought a way to “glue” an alginate hydrogel, a water-absorbing substance also used in food and medical industries, to a surface formed by polydimethylsiloxane (PDMS), a silicone polymer that is a common material in microscale biotechnologies.

“It has been often suggested that integration of the silicone-based materials with organic, tissue-like hydrogel materials should enhance functionality,” says Kong. “However, it was a grand challenge to attain and sustain adhesion between two disparate materials.”

The solution, developed by first author Chaenyung Cha, Kong, and others, was to develop a multi-step protocol to covalently link alginate, the polysaccharide that is also a component of the hydrogel, to a PDMS surface. The resulting alginate-PDMS can then participate in a cross-linking reaction that forms an alginate hydrogel. Tests performed as part of the study showed that the attachment of hydrogel to PDMS formed by this process is stable for several months, can tolerate bending and repeated stretching, and is not degraded by aqueous solutions. The hydrogel is more hydrophilic than the surfaces produced by previously developed treatments, and its physical properties can be easily controlled by modifying the crosslinking reaction used in its formation.

The study also explored several practical applications of the hydrogel-PDMS surface. Fibroblasts, a type of cells found in connective tissue, were first cultured on a hydrogel-PDMS surface, and then chronically exposed to repeated stretching. This type of manipulation would not be possible with less elastic cell culture substrates, and has value for researchers studying the effects of mechanical stress on living cells inside the body. 

Another experiment showed that the hydrogel could be successfully and stably synthesized within the channels of a microfluidic device. “This method will greatly advance quality of cell culture platforms and microfluidic devices. It will further benefit design of novel drug delivery systems and cell transplantation devices,” Kong said.

Research was performed in the Chemical and Biomolecular Engineering Department and the Institute for Genomic Biology at the University of Illinois. Cha, who worked on the study as a graduate student in Kong’s lab, is now a postdoctoral fellow at MIT. Other authors of the study are Eleni Antoniadou, Minkyung Lee, Jae Hyun Jeong, Wylie W. Ahmed, Taher A. Saif, Gutgsell Professor of Mechanical Science and Engineering , and Professor Stephen A. Boppart, who has appointments in the Departments of Electrical and Computer Engineering, Bioengineering, and Medicine. The work was reported in the July 1, 2013 issue of Angewandte Chemie (DOI: 10.1002/anie.201302925).

For more information, visit The Institute for Genomic Biology.

Related Articles Read More >

An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
Q&A with Darshin Patel, who led the Edwards Lifesciences Sapien M3 TMVR system’s development
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
A photo of the Northwestern University pacemaker surrounded by grains of rice for scale [Photo courtesy of Northwestern]
Researchers develop tiny pacemaker that’s injectable and bioabsorbable
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe