Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Biopsy Robot Combines MRI and Ultrasound

January 20, 2016 By University of Twente

UT researchers are collaborating with parties such as Siemens, KUKA and universities in Verona and Vienna to build a robot that combines the best aspects of an MRI scan with cheaper and less precise technologies, such as an ultrasound sensor and a pressure sensor.

Researchers at the University of Twente in The Netherlands are working on a biopsy robot that combines the best features of MRI and ultrasound, aiming to improve the diagnosis of breast cancer and muscle diseases.

Current screening techniques for breast cancer result in 10 to 20 percent of patients wrongly being sent home with good news, says UT researcher Foad Sojoodi Farimani. He is one of the project leaders of the European research project MURAB, which stands for MRI and Ultrasound Robotic Assisted Biopsy.

Farimani’s goal is to significantly reduce this percentage of false negatives. ‘If a mammography shows a suspicious image then we need to take a small piece of tissue for lab examination. But it’s difficult to determine precisely where the biopsy should be carried out. As a result we overlook too many patients who do indeed have a problem. That’s an issue we hope to solve.’

Expensive MRI and Cheap Ultrasound
A biopsy in the MRI scanner could present a solution, explains Farimani. ‘MRI does not generate any radiation, has no side effects, and you can determine very precisely where you should do your biopsy. But it’s very expensive and it takes about 45 to 60 minutes a patient. Even wealthier countries can’t afford any large-scale screening programs with MRI.’

This is why the UT researchers are collaborating with parties such as Siemens, KUKA and universities in Verona and Vienna to build a robot that combines the best aspects of an MRI scan with cheaper and less precise technologies, such as an ultrasound sensor and a pressure sensor.

Muscle Diseases
This will mean that patients need to spend just 15 to 20 minutes in the MRI scanner. ‘This produces an offline MRI image that you can combine, during the biopsy, with online images from the ultrasound sensor,’ says Farimani. ‘One of the biggest challenges in this project is to use the precise MRI image to locate suspicious tissue in the much more indistinct ultrasound image.’

In addition to breast cancer, Farimani and his colleagues are also focusing on biopsy for muscle diseases. But ultimately, he says, the technology should be suitable for all diagnoses where a small piece of human tissue needs to be removed from the body.

Collaboration with Hospitals
Dutch hospitals such as Radboud University Medical Center and the ZGT hospital group are also involved in the research project. The UT is working with these parties to bring the technology into line with market wishes. ‘The robotics in this project might actually be the simplest issue. Actually getting medical technology to market is often easier said than done,’ adds Farimani.

The MURAB project got underway quite recently. In November, MURAB received a Horizon2020 grant of 4.3 million euros. Some 1.2 million euros of this are going to the UT, which is managing the project. Besides Farimani, professors Stefano Stramigioli (project leader) and Ferdi van der Heijden are also responsible for project coordination; they are members of the CTIT research institute at the UT.

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe