Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Brain-Imaging System Uses “Multi-Pupil” Prism Arrays

May 15, 2017 By Emil Venere, Phys.org

A specialized type of adaptive-optics technology that has been demonstrated by taking high-resolution time-lapse images of functioning brain cells might be used to better understand how the brain works.

The system is capable of revealing changing details of biological processes in cells over a larger field of view than otherwise possible, allowing “high throughput” essential for the study of brain activity.

“We are looking at huge numbers of neurons, so the number of data points you can measure per second is 20 million, 30 million,” says Meng Cui, an assistant professor in Purdue University’s School of Electrical and Computer Engineering and the Department of Biological Sciences. “High throughput is very important because you want to measure these numerous neurons simultaneously at very high speed and also at high spatial resolution.”

Purdue University graduate student Yifeng Zhou, at left, and assistant professor Meng Cui review data from a new adaptive-optics technology for brain research. The method, called multi-pupil adaptive optics, is aiding research into brain function. (Credit: Purdue University image/Erin Easterling)

The method, called multi-pupil adaptive optics, hinges on deformable mirrors that change shape to counteract the distortion caused when light passes through biological tissue, and a “prism array” containing many faceted segments. Each segment produces its own image corresponding to a different part of a microscope’s field of view.

“That way you simultaneously correct the distortion in different regions and you can look at them all together,” Cui says. “So you can see clearly over a wider field of view than before and at high resolution.”

Researchers used the system to image brain cells called microglia; signaling processes of neurons involving calcium; vasculature in the brain; and “dendritic spines,” structures in neurons critical to learning and communication between brain cells.

Findings are detailed in a research paper published on May 8 in the journal Nature Methods.

“The microglial cells are important for maintaining brain health and recovering from strokes,” Cui says. “High-resolution in-vivo imaging of dendritic spines is also of great importance in neuroscience.  And calcium imaging has been widely used in neuroscience for in-vivo large-scale recording of neuronal network activity, which demands both high speed and excellent image quality.”

The system was used to perform time-lapse imaging to study changes in functioning brain cells, in research with laboratory mice. 

Cells and living tissue contain a complex combination of structures and materials, all having a different index of refraction, which defines how fast light travels while passing through materials. Because of this heterogeneity, light traveling through cells produces blurred images, not unlike the effect of raindrops on a car’s windshield. Devices called spatial light modulators in adaptive optics systems are able to counter this distortion by changing shape when voltage is applied, adjusting for the refraction differences.  However, conventional adaptive optics systems are limited because they are able to image only small areas at a time.

“Multi-pupil adaptive optics solves this problem,” says Cui, who invented the method.

The initial research used a 3-by-3 prism array containing a total of nine segments, each around a square centimeter.

“The current version of multi-pupil adaptive optics is about 10 times better than conventional methods,” he says.

However, the performance might be improved by increasing the size of these arrays to contain perhaps as many as 36 segments.

Related Articles Read More >

How this device broke through the blood-brain barrier
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
An illustration showing the Artedrone Sasha thrombectomy catheter approaching a blood clot.
This microrobot system is designed to float inside a stroke patient for autonomous thrombectomy
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe