Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

BUSM Researchers Identify Molecule that Could Aid Lung Cancer Detection, Treatment

October 28, 2013 By Boston University Medical Center

Researchers at Boston University School of Medicine (BUSM) have discovered a molecule that could help lead to the non-invasive detection of lung cancer as well as its treatment. Using RNA sequencing, the team looked at airway epithelial cells and identified a regulatory molecule that was less abundant in people with lung cancer and inhibits lung cancer cell growth. The findings, which are published in the Proceedings of the National Academy of Sciences, suggest that this molecule may aid in diagnosing lung cancer in earlier stages and could potentially, when at healthy levels, aid in treating the disease.

According to the National Cancer Institute (NCI), lung cancer is the leading cause of cancer death among both men and women in the United States, and 90 percent of lung cancer deaths among men and approximately 80 percent of lung cancer deaths among women are due to smoking. The NCI also estimates that approximately 373,489 Americans are living with lung cancer and its treatment costs approximately $10.3 billion in the United States each year.

MicroRNA’s are a new class of molecules classified as important regulators of the activity of other genes. In this study, the research team used a next-generation RNA sequencing technology and identified that a microRNA named miR-4423 in epithelial airway cells plays a major role in how these cells develop. In epithelial cells from the airway of smokers with lung cancer, levels of miR-4423 were decreased.

“These results suggest measuring the levels of microRNAs like miR-4423 in cells that line the airway could aid in lung cancer detection through a relatively non-invasive procedure,” said Avrum Spira, MD, MSc, the Alexander Graham Bell professor of medicine and chief of the division of computational biomedicine at BUSM, one of the study’s senior authors.

Using experimental models in vitro and in vivo, the research team demonstrated that miR-4423 can both promote the development of the normal airway cells and suppress lung cancer cell growth. This suggests that miR-4423 plays a major regulatory role in cell fate decisions made by airway epithelial cells during maturation and low levels of miR-4423 contributes to lung cancer development. Interestingly, throughout the body, miR-4423 seems only to be present in high levels in the airway epithelium, suggesting this could be a very specific process occurring only in the lungs.

“Our findings open up the option to study whether returning miR-4423 levels to normal in the airway could help stop cancer growth and potentially be a way to treat lung cancer,” said Catalina Perdomo, PhD, a researcher in the division of computational biomedicine at BUSM who is the paper’s lead author.

“Interestingly, when we examined the genomes of other species for microRNAs that might function like miR-4423, we did not find anything in non-primates,” said Marc Lenburg, PhD, an associate professor in computational medicine and bioinformatics at BUSM who is one the study’s senior authors. “It makes us wonder what it is different about lung development in primates and excited that this could be a very specific process to target for lung cancer treatment.”

For more information, visit Boston University Medical Center.

Related Articles Read More >

A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe