Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Chemists Develop Ultra-Sensitive Test for Cancers, HIV

March 10, 2016 By Bjorn Carey, Stanford University

Catching a disease in its earliest stages can lead to more effective therapies. Stanford chemists have increased the likelihood of detecting these diseases via a test that is thousands of times more sensitive than current diagnostics.

A common theme in medicine is that detecting a disease early on can lead to more effective treatments. This relies partly on luck that the patient gets screened at the right time, but more important is that the testing techniques are sensitive enough to register the minuscule hints that diseases leave in the blood stream.

A new technique developed by a team of chemists at Stanford has shown promise to be thousands of times more sensitive than current techniques in lab experiments, and it is now being put to test in real-world clinical trials.

Graduate students Cheng-ting “Jason” Tsai and Peter Robinson prepare a gel electrophoreresis experiment to analyze a DNA-tagged biomarker. (Credit: L.A. Cicero)

When a disease – whether it’s a cancer or a virus like HIV – begins growing in the body, the immune system responds by producing antibodies. Fishing these antibodies or related biomarkers out of the blood is one way that scientists infer the presence of a disease. This involves designing a molecule that the biomarker will bind to, and which is adorned with an identifying “flag.” Through a series of specialized chemical reactions, known as an immunoassay, researchers can isolate that flag, and the biomarker bound to it, to provide a proxy measurement of the disease.

The new technique, developed in the lab of Carolyn Bertozzi, a professor of chemistry at Stanford, augments this standard procedure with powerful DNA screening technology. In this case, the chemists have replaced the standard flag with a short strand of DNA, which can then be teased out of the sample using DNA isolation technologies that are far more sensitive than those possible for traditional antibody detections.

“This is spiritually related to a basic science tool we were developing to detect protein modifications, but we realized that the core principles were pretty straightforward and that the approach might be better served as a diagnostic tool,” said Peter Robinson, a co-author on the study and graduate student in Bertozzi’s group.

The researchers tested their technique, with its signature DNA flag, against four commercially available, FDA-approved tests for a biomarker for thyroid cancer. It outperformed the sensitivity of all of them, by at least 800 times, and as much as 10,000 times. By detecting the biomarkers of disease at lower concentrations, physicians could theoretically catch diseases far earlier in their progression.

“The thyroid cancer test has historically been a fairly challenging immunoassay, because it produces a lot of false positives and false negatives, so it wasn’t clear if our test would have an advantage,” Robinson said. “We suspected ours would be more sensitive, but we were pleasantly surprised by the magnitude.”

Putting basic research to use in a clinical setting has been a focus of Bertozzi’s since she arrived at Stanford.

“I moved to Stanford with the anticipation that translation of my students’ innovations to clinically impactful products and technologies would be enabled,” said Bertozzi, who is also a professor, by courtesy, of radiology and of chemical and systems biology. “That goal is being delightfully fulfilled.”

Based on the success of the thyroid screening, the group has won a few grants to advance the technique into clinical trials. One trial underway in collaboration with the nearby Alameda County Public Health Laboratory will help evaluate the technique as a screening tool for HIV. Early detection and treatment of the virus can help ensure that its effects on the patient are minimized and reduce the chance that it is transmitted to others. This effort is supported by a pilot grant from Stanford-Spectrum, funded by the National Center for Advancing Translational Sciences at the National Institutes of Health.

“Many of our collaborators are excited that the test can be readily deployed in their lab,” said co-author Cheng-ting “Jason” Tsai, a graduate student in Bertozzi’s group. “In contrast to many new diagnostic techniques, this test is performed on pre-existing machines that most clinical labs are already familiar with.”

The researchers are also pursuing tests for Type 1 diabetes, for which early detection could help patients manage the disease with fewer side effects.

Related Articles Read More >

A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe