Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Clock-Inspired, Electronics-Free Device Allows Transport of Stem Cells on Planes

June 25, 2014 By UC San Diego

 Stephen Chun, a senior and mechnical engineering major, explains how the device works to another student.A group of mechanical engineering students are developing a device to transport stem cells on airplanes — an important problem for the research and biomedical community. The challenge with transporting live cells for stem cell therapies on a plane is twofold. The cells need to be constantly agitated so that they don’t clump together and lose their medical properties. And the FAA doesn’t allow packages with running electronics on airplanes — so a standard device driven by motors is not an option for transport.

The student project is part of the senior design capstone class for students in the Department of Mechanical and Aerospace Engineering at UC San Diego. The project was sponsored by Dr. Jeffrey Goldberg, professor and director of research at the UC San Diego Shiley Eye Center and his colleague Dr. Noelia Kunzevitzky. Goldberg and Kunzevitzky are working to patent the device and commercialize it for research groups around the world.

“This device has the potential to revolutionize the cell therapy industry,” Kunzevitzky said. “The ability to ship stem cells will allow production to enter into a mass production phase rather than a local laboratory setting. This could then drive down prices for cell therapies, making them more readily available for treatment of diseases such as glaucoma and macular degeneration, for example.”

In the design capstone class, known as MAE 156b, students work in teams on a wide variety of projects. This year, projects included a system to load a specimen into an MRI, which had to be designed without magnetic materials; a system to reposition 2,500 lb computer servers; and a virtual reality environment for fruit flies, among many others.

The class requires students to work in teams on a project sponsored by a company or faculty member. They have 15 weeks to deliver a working prototype to their sponsors. Along the way, they learn how to apply the theories they learned in their mechanical engineering classes; how to work as part of a team; and how to deliver a working prototype.

“I am so impressed by the student motivation to solving real world problems, along with their creativity and ability to overcome obstacles,” said Nathan Delson, a teaching professor who coordinates the capstone design course, which is taught by several instructors.

Working with their sponsors and with their instructor, Jerry Tustaniwskyj, the student team built a device inspired by a mechanical clock, which is spring-driven device and can house and agitate tubes of stem cells during shipping without use of electronics. The device is powered by a series of constant torque springs. Each spring can drive the device for a little more than 12 hours. The device can be modified to house as many springs as needed. The springs drive a gearbox that in turn rotates the vials where the stem cells are stored via a timing belt. The device rotates eight times per minute. Interestingly, the students were inspired by the design of a pendulum clock and escapement mechanism, which they studied in their freshman design class.

The students developed a working prototype, but some fine tuning remains to reduce system friction.

Students on the team said they learned about teamwork and design. “The whole design process was a learning process,” said Peter Dvorak, also a mechanical engineering major and June 2014 graduate.

“It’s what you do in the real world,” said Stephen Chun, a senior and mechanical engineering major who graduated this month.

Related Articles Read More >

Verily Study Watch
Verily says its Study Watch could identify heart failure risk
A child using a medical device at home.
Device design takes the spotlight among 2024’s top health tech hazards
These 11 medical device inventions are the best of 2023, Time magazine says
A photo of a Best Buy Geek Squad employee helping a chronic care patient with a remote monitoring device.
Device manufacturers have an unexpected ally for at-home health care
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe