
A remotely regulated living bionic heart is pictured. The engineered tissue is comprised of living cardiac cells, polymers, and a complex nanoelectronic system. This integrated electronic system provides enhanced capabilities, such as online sensing of heart contraction, and pacing when needed. In addition, the electronics can control the release of growth factors and drugs, for stem cell recruitment and to decrease inflammation after transplantation.
More than 25% of the people on the national US waiting list for a heart will die before receiving one. Despite this discouraging figure, heart transplants are still on the rise. There just hasn’t been an alternative. Until now.
The “cyborg heart patch,” a new engineering innovation from Tel Aviv University, may single-handedly change the field of cardiac research. The bionic heart patch combines organic and engineered parts. In fact, its capabilities surpass those of human tissue alone. The patch contracts and expands like human heart tissue but regulates itself like a machine.
The invention is the brainchild of Prof. Tal Dvir and PhD student Ron Feiner of TAU’s Department of Biotechnology, Department of Materials Science and Engineering, and Center for Nanoscience and Nanotechnology. Their study was published today in the journalNature Materials.
Science fiction becomes science fact
Prof. Dvir’s Tissue Engineering and Regenerative Medicine Lab at TAU has been at the forefront of cardiac research for the last five years, harnessing sophisticated nanotechnological tools to develop functional substitutes for tissue permanently damaged by heart attacks and cardiac disease. The new cyborg cardiac patch not only replaces organic tissue but also ensures its sound functioning through remote monitoring.
For the new bionic patch, Dr. Dvir and his team engineered thick bionic tissue suitable for transplantation. The engineered tissue features electronics that sense tissue function and accordingly provide electrical stimulation. In addition, electroactive polymers are integrated with the electronics. Upon activation, these polymers are able to release medication, such as growth factors or small molecules on demand.
Cardiac therapy in real time
Dr. Dvir is currently examining how his proof of concept could apply to the brain and spinal cord to treat neurological conditions.
American Friends Of Tel Aviv University
www.aftau.org