Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Designing Ultra-Sensitive Biosensors for Early Personalized Diagnostics

July 9, 2014 By Alexander Hellemans, youris.com

A new type of high-sensitivity and low-cost sensors, called plasmonic biosensors, could ultimately become a key asset in personalized medicine by helping to diagnose diseases at an early stage. (Credit: Argonne National Laboratory)Personalized medicine is one of the new developments that is deemed to revolutionize health care. A key component is the detection of biomarkers, proteins in blood or saliva, for example, whose presence or abnormal concentration is caused by a disease. Biomarkers can indicate the presence of diseases long before the appearance of symptoms. However, currently the detection of these molecules still requires specialized laboratories and is costly.

Thanks to the EU-funded research project called NANOANTENNA, completed in March 2013, physicists joined forces with chemists, nanotechnologists and biomedical researchers with the aim of developing a so-called plasmonic nanobiosensor for the detection of proteins. It consisted of nanoantennas, tiny gold rods about 100 to 200 nanometres long and 60 to 80 nm wide. By shining light onto such a nanoantenna, the electrons inside start moving back and forth, amplifying the light radiation in hot spots regions of the antenna, explains Pietro Giuseppe Gucciardi, a physicist at the Institute for Chemical-Physical Processes, affiliated with the Italian National Research Council CNR, in Messina, Sicily. “The aim of the project was to deliver a proof of concept,” says Gucciardi.

Read: Working Toward a Single-Molecule Biosensor: An Interview with Pietro Gucciardi

During the 1990s’ researchers found that plasmons, tiny waves of electrons in metallic surfaces that appear when such surfaces are illuminated, also amplify the light in an area close to that surface. In biosensors, protein molecules are identified by irradiating them with infrared light and by analyzing the spectrum of the light they emit, known as a Raman spectrum. If these molecules are close to nanoparticles, the plasmons in the nanoparticles enhance the Raman signal coming from the molecules that have to be detected with several orders of magnitude.

The nanoantennas developed in this project only enhance the emitted Raman signal if the biomolecules are close to the hot spots. Therefore, the molecules have to be trapped to be detected. To do so, the researchers attached bioreceptors, fragments of DNA engineered to recognize specific proteins, to the nanoantennas. When the nanoantennas studded with the bioreceptors are incubated in a solution that contains the biomarkers to be detected, the latter become attached to the nanoantennas. When, subsequently, these nanoantennas are illuminated with light, they show the Raman fingerprints of both the bioreceptor and the biomarker, as Gucciardi points out.

One expert comments that healthcare programs are quickly moving to prevention and early detection of diseases, done in point-of-care (POC) or bed-side conditions. “It is important to fund this research because it will be a component of future medicine,” says Alexandre Brolo, professor of chemistry specialized in nanotechnology research, who has been developing plasmonic biosensors at the University of Victoria, British Columbia, Canada. He also believes that such approach will make medical care more cost effective. “You want something that is very cheap and is not going to put a big burden on the health care system,” says Brolo.

Another expert agrees. “Small, compact and autonomous devices with the same features in terms of sensitivity and robustness as current commercial instrumentation based on plasmonics are still needed,” says Maria Carmen Estévez, a researcher at the Catalan Institute of Nanoscience and Nanotechnology in Bellaterra, Spain. The “end-users” of these biosensors have to understand that the development of these devices by researchers in many disciplines is a long process, notes Estévez. She adds that these biosensors will need to be integrated with optical components, with electronics for reading out the measurements, software to process all data, and rely on the use of microfluidics to prepare and process the sample.

Related Articles Read More >

A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
An image of Abbott's Infinity deep brain stimulation (DBS) implants and leads.
How Abbott developed the first-of-its-kind Infinity DBS system
Axoft Fleuron brain-computer interface BCI probe
Axoft makes Fleuron BCI material available for purchase, inks license deal with Stanford
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe