Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Detailed Images Of Tumor Vasculature

April 19, 2018 By Ruhr-University Bochum

The new technology has been developed jointly by teams headed by Prof Dr Georg Schmitz at the Chair for Medical Engineering at Ruhr-Universität Bochum and by Prof Dr Fabian Kiessling at the Institute for Experimental Molecular Imaging at the University Hospital Aachen. They published their report in the journal Nature Communications from April 18, 2018.

Monitoring microbubbles on their path through the body

The new technology called “Motion Model Ultrasound Localization Microscopy” is based on contrast medium-enhanced ultrasound images. Microbubbles are administered to patients as contrast agents: gas bubbles no larger than one micrometre that travel through the body in the bloodstream. In ultrasound images, they appear as shapeless white blobs. “Once the centre of each of these blobs has been identified, it’s possible to determine the location of individual bubbles,” explains Georg Schmitz.

Each bubble is given a name

Using algorithms originally developed for radar technology, the research team successfully monitored the motion of individual microbubbles. “We are currently attempting to teach the computer something that our eyes are able to do: namely read movement in a sequence of images in which a dot appears in different locations,” says Schmitz. To this end, the researchers gave each bubble a name. Thus, they were able to track their paths through the vascular system and count them in the process.

Resolution much higher than mere image resolution

Subsequently, fine vascular networks can be reconstructed based on the motion of the bubbles. The direction and speed of the blood flow can likewise be recorded. The resolution of the images is greatly enhanced: experts refer to the technique as super-resolution imaging.

“In the publication, we demonstrated that the synthesis of morphological and functional parameters considerably facilitates the differentiation between tumour types,” explains Fabian Kiessling. In the course of their project, they tested the technique in three model cases, including in human subjects. In collaboration with Prof Dr Elmar Stickeler from the Clinic for Gynaecology and Obstetrics at the University Hospital Aachen, the researchers successfully identified how tumour vessels responded to chemotherapy in breast cancer patients.

Monitoring therapy effects

“One reason why this is important is because new therapy approaches aim at manipulating the vascular system of tumours, in order to enhance the therapeutic effect by increasing the concentration of drugs in the tumours,” says Fabian Kiessling. One of these approaches is so-called sonoporation. Here, tumours are treated with ultrasound in order to render the vascular walls more permeable to active substances.

“The advantage of our approach is that it can be performed with conventional ultrasound scanners, which have a low frame frequency, with sometimes as few as 15 images per second,” points out Georg Schmitz. The research teams have already filed an application for a follow-up project, in the course of which they intend to test the method in large-scale clinical studies.

Related Articles Read More >

Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age
A Medtronic HVAD pump opened up to show the inner workings
Medtronic investigates HVAD pump welds after patient deaths
Galien Foundation 2022 nominees
18 of the world’s most innovative medical technologies

DeviceTalks Weekly.

May 27, 2022
Quick message - No DTW podcast, but plenty else to listen to over this weekend and next week.
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech