Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Developing Wound-Healing Tissue Scaffolds from Protein in Blood

March 5, 2019 By Tierney King

Researchers have found a plasma protein in blood that could help develop a new method for making wound-healing tissue scaffolds.

The scaffold can be attached or detached from a surface for tissue studies or direct applications to the body. This research could be pertinent to the future use in wound healing and tissue engineering.

Professor Dorothea Brüggemann, lead author from the University of Bremen, says, “The protein we used is called fibrinogen. It is an extracellular glycoprotein found in blood plasma and plays a major role in wound healing by assembling into a fibrous network to form a provisional extracellular matrix (ECM) that helps with wound closure.”

Fibrinogen is most often processed into hydrogels and fibrous scaffolds for cell culture and tissue engineering applications. Existing ways of doing this, such as electrospinning or the preparation of fibrin hydrogels, use organic solvents, high electric fields, or enzymatic activity. All of these processes change the molecular structure or native protein functions of fibrinogen.

In order to solve this, the team wanted to see if they could develop a simple and controllable way to make 3D scaffolds while retaining its properties.

“For the first time, we were able to assemble fibrinogen into dense, three-dimensional scaffolds without using high voltages, organic solvents or enzymatic activity,” says Professor Brüggemann. “Our biofabrication process can be controlled simply by adjusting the fibrinogen and salt concentration, and the pH range.”

The dimensions of the scaffolds reached diameters in the centimeter range and achieved a thickness of several micrometers. With 100 to 300 nm, the diameters for the self-assembled fibers were in the range of native ECM fibers and fibrin fibers in blood clots.

“This novel class of fibrinogen nanofibers holds great potential for various biomedical applications. For example, in future studies on blood coagulation our immobilized fibrinogen nanofibers could provide a valuable in vitro platform for initial drug screening,” says Professor Brüggemann. “On novel wound healing applications, it will be highly interesting to study the interaction of fibroblasts and keratinocytes with our free-standing fibrinogen scaffolds.”

Related Articles Read More >

Rockwell Experience Center opens at Dean Kamen’s Advanced Regenerative Manufacturing Institute
What is microscale 3D printing? Lessons learned from Mayo Clinic
cleveland-clinic-disruptors-2021
The top 10 medical disruptors of 2021
6 medical device industry supplier innovations you should know

DeviceTalks Weekly.

June 24, 2022
How innovative design, commercial strategy is building Cala Trio’s bioelectronic medicine market
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech