Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Directed Evolution Opens Door to New Antibiotics

May 13, 2019 By Emily Velasco

In the ongoing arms race with humans and their antibiotics on one side, and bacteria with their ability to evolve defenses to antibiotics on the other, humans have enlisted a new ally—other bacteria.

Many common antibiotics, including the most famous antibiotic, penicillin, are based around a molecular structure known as a beta-lactam ring. These drugs, aptly named beta-lactam antibiotics, interfere with a bacterium’s ability to build its cell wall.

As bacteria develop resistance to existing antibiotics, researchers and pharmaceutical companies work to create new ones. That means a lot of work is done creating new kinds of beta-lactams, and that is where Frances Arnold‘s lab enters the picture.

Beta-lactams are made by taking a chainlike molecule and looping it, kind of like taking one end of a string and tying it in a knot to the middle of the string.

The paramount challenge is to control precisely where along the molecule the reaction takes place. With traditional synthetic chemistry, chemists have to tack extra pieces onto molecules that they want to turn into beta-lactams. Without those extra pieces, the knots will end up tied in inconsistent spots, resulting in some loops that are large and some that are small. That’s undesirable for someone trying to manufacture a consistent batch of antibiotics. But the addition of those extra pieces makes the synthesis more complicated because additional steps are required to add them and still more steps to remove them after the looping is complete.

Graduate student Inha Cho and postdoctoral scholar Zhi-Jun Jia, both from Arnold’s lab, have developed something simpler by using directed evolution, a technique developed by Arnold, the Linus Pauling Professor of Chemical Engineering, Bioengineering and Biochemistry, and director of the Donna and Benjamin M. Rosen Bioengineering Center. In directed evolution, which Arnold developed in the 1990s and for which she received the 2018 Nobel Prize in Chemistry, enzymes are evolved in a lab until they behave in a desired way. The genetic code of a useful enzyme is transferred into bacteria like Escherichia coli. As the bacteria grow, divide, and go about their lives, they churn out the enzyme.

In this case, Cho and Jia took an enzyme known as cytochrome P450, which has been a versatile workhorse in the Arnold lab, and evolved it to produce beta-lactams. Two other versions of enzymes were also created to construct other ring sizes of lactams. One version creates a gamma-lactam, a loop of four carbon atoms and one nitrogen atom. And the other version creates a delta-lactam, a loop of five carbon atoms and one nitrogen atom.

“We’re developing new enzymes with activity that cannot be found in nature,” says Cho. “Lactams can be found in many different drugs, but especially in antibiotics, and we’re always needing new ones.”

Jia points out that the enzymes they have created are also incredibly efficient, with each molecule of enzyme capable of producing up to one million beta-lactam molecules. “They represent the most efficient enzymes created in our lab, and are ready for industrial applications,” Jia says.

Related Articles Read More >

Nanoscopic imaging showing human keratinocyte-matrix interaction.
These smart materials are key to advancing regenerative medicine
A series of before-and-after brain scans showing improvement in long COVID patients after hyperbaric oxygen therapy
Long COVID study finds potential in hyperbaric oxygen therapy
Rockwell Experience Center opens at Dean Kamen’s Advanced Regenerative Manufacturing Institute
What is microscale 3D printing? Lessons learned from Mayo Clinic
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe