Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Electric Brain Stimulation Might Support Stroke Recovery

March 17, 2016 By University of Oxford

A team from Oxford’s Nuffield Department of Clinical Neurosciences, led by Professor Heidi Johansen-Berg and Dr. Charlotte Stagg, studied the use of transcranial direct current stimulation (tDCS) to support rehabilitation training. The technique involves placing electrodes on the scalp to pass a constant low current through a particular area of the brain.

In this case, the team used a variant called ipsilesional anodal tDCS, where a positive (anodal) current is applied on the side of the brain where damage has occurred. Anodal stimulation has previously been shown to increase the learning of motor skills in healthy people. The hope was that this effect could also be demonstrated in stroke patients, using tDCS to reinforce training that helps patients relearn how to use their body.

Professor Heidi Johansen-Berg said: ‘For stroke patients, longer and more intensive training leads to greater recovery. However, cost and staff availability limit what can be provided. That means that there is increasing interest in therapies that can be used to boost the effects of training.’

The study included twenty-four volunteers who had had a stroke affecting their hand and arm function, split into two groups. Both groups were given nine days of motor training. One group had tDCS during the training sessions, while the other group acted as a control: they were fitted with electrodes but did not receive tDCS.

Before, and at various times up to three months after the training, the volunteers’ motor skills were assessed using established clinical measures to see how much they had improved.

Professor Johansen-Berg said: ‘The assessments before the training were used to establish a baseline score for motor skills. Further assessments could then be used to determine what improvement there was above that baseline.

‘Three months after training, the group that had received tDCS had improved more on our clinical measures than those in the control group. This showed that the patients who had received tDCS were better able to use their hands and arms for movements such as lifting, reaching and grasping objects.’

MRI scanning also showed that those who had had tDCS had more activity in the relevant brain areas for motor skills than the control group.

Study volunteer Jan said: ‘The training was exhausting – like being in the gym every day, but it was huge fun. Even after the first session I felt as if I could do more, even though I was knackered. That made me go back every day, and I found it easier and easier. [The stimulation] didn’t hurt – more like a mild tingle or a static electric shock right on the top of my head. The worst part was that my head itched afterwards!’

She added: ‘I have definitely improved and benefited. People who haven’t seen me say ‘wow – you can move better now’. It definitely helped. I’m just sorry I can’t continue with it. It was so nice to meet a team who had such positive attitudes and who told me it was not too late to improve.’

The research team conclude that there is positive evidence for the use of tDCS to aid stroke recovery but caution that the technique must be proved to have long term benefits not only in clinical measurements but also in the ability to carry out tasks important to daily life. Larger studies, they say, will be needed before this approach could enter routine clinical care.

Find more information on the study here.

Related Articles Read More >

Carnegie Mellon University EEG-based BCI to control robotic hand
Non-invasive BCI enables robotic hand dexterity
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
How this device broke through the blood-brain barrier
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe