Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Electric Mesh Device Gives the Heart an Electromechanical Hug

June 28, 2016 By Beth Israel Deaconess Medical Center

A research team led by investigators at Beth Israel Deaconess Medical Center and Seoul National University has developed a new electric mesh device that can be wrapped around the heart to deliver electrical impulses and improve cardiac function in experimental models of heart failure.

The study, published in Science Translational Medicine, points to a potential new way of improving heart function and treating dangerous arrhythmias by compensating for damaged cardiac muscle and enabling healthy heart muscle to work more efficiently.

Under normal conditions, the heart pumps blood throughout the body through a series of coordinated contractions maintained by a carefully synchronized electrical conduction system. With the development of heart failure – when weakened heart muscle damages the heart’s pumping mechanism – this electrical conduction system can be damaged.

“Some patients with heart failure are treated with resynchronization therapy, in which three pairs of small electrodes are implanted with a pacemaker to keep the heart contracting coordinately,” explained corresponding author Hye Jin Hwang, MD, PhD, a researcher in the Division of Cardiovascular Medicine in the Beth Israel Deaconess CardioVascular Institute. “But pacemakers deliver electrical stimulation only at specific places in the heart and do not provide comprehensive coverage of the entire organ, as the heart’s own cardiac electrical conduction system does.”

The research team, therefore, set out to develop an alternative device that would more closely resemble the human heart.

“In developing the novel material for this device, we wanted to closely imitate cardiac tissue, which is very elastic, and also imitate its unique functions, which is highly conductive,” according to Hwang, who collaborated with Seoul National University researchers Taeghwan Hyeon, PhD, a specialist in nanomaterials and Dae-Hyeong Kim, PhD, a specialist in stretchable devices, to create the new nanocomposite. 

The result was a new mesh device made up of nanowires, wires thinner than human hair, embedded in a rubber polymer that can conform to the unique three-dimensional anatomy of each individual heart.

“The mesh essentially wraps around and ‘hugs’ the heart and delivers electrical impulses to the whole ventricular myocardium, or heart muscle, “ Hwang said. 

Tests of the device in models of rats showed that the mesh was integrating both structurally and electrically with the myocardium following heart attack, acting as a substructure of the heart during cardiac movement and improving cardiac contractile function without disturbing relaxation.

The next step, the authors say, will be to evaluate long-term performance of the novel electrical therapy with an upgraded device in large animal models, with the ultimate goal of clinical application in humans. 

“We knew that an integrated strategic approach that prevents and suppresses irregular heartbeat in addition to improving cardiac function would be a promising strategy for the treatment of heart failure, ventricular arrhythmias, and sudden death,” coauthor Mark E. Josephson, MD, an international leader in the field of electrophysiology, said.

The work was supported by a grant from the Ministry of Science, ICT and Future Planning in Korea, as well as support from the National Science Foundation and the Institute of Computer Engineering and Sciences, University of Texas, Austin.

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
This Baylor marketing image shows Dr. Kenneth Liao at Baylor St. Luke's Medical Center using the same Intuitve da Vinci surgical robot that he used to perform the first successful, fully robotic heart transplant in the U.S.
Intuitive system used in first robotic heart transplant in US
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe