Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Engineering Professor Awarded for Robotic Prosthesis

May 6, 2014 By University of Alabama

This prototype of an above-knee prosthesis uses muscle actuators to drive the knee and ankle motion.The National Science Foundation selected a University of Alabama mechanical engineering professor for a CAREER Award for his research into a robotic prosthesis that could help amputees walk better.

The CAREER Award is NSF’s most prestigious recognition of top-performing young scientists beginning their careers.

Dr. Xiangrong Shen, assistant professor of mechanical engineering in the UA College of Engineering, was awarded nearly $424,000 to assist his innovative work into biologically-inspired, powered prosthesis that mimic natural joints.

There are more than 400,000 people with a leg amputated below the hip in the United States, and this number is expected to double by 2050, according to Shen.

“The idea is to benefit those amputees to live a higher quality life. That’s the motivation for all these works,” he said.

Most prostheses only dissipate energy, or store and reuse energy in walking. This requires the amputee’s other joints to work harder, causing the amputee to expend more energy and resulting in an often unnatural and asymmetric gait.

There are leg prosthetics that provide energy to an amputee, but they rely on battery-powered motors that can be bulky and heavy. Shen’s approach to robotic prostheses uses rocket fuel, the compound monopropellant, to power an artificial muscle. The pneumatic system replaces the motor used in current powered-prosthetics.

Shen’s system is proving to be lighter, more powerful and more compact than current designs, but work remains.

“This is a relatively new system,” Shen said. “There are some problems in putting the prosthesis into clinical use because the components of the prosthesis are still being developed. In our research, the long-term goal is to develop powered prostheses with comparable appearance and functionality as human limbs.”

As a unique class of liquid fuel, monopropellant releases energy through a chemical reaction called catalytic decomposition, which means the monopropellant decomposes and expands upon contact with a catalyst such as iridium and silver. The reaction produces oxygen and steam that drives a sleeve-muscle actuator, an artificial muscle that replaces a motor. This high-pressure, compact pneumatic system is more durable than a battery-powered motor, according to Shen’s research.

Dr. Xiangrong Shen, assistant professor of mechanical engineering, researches biological and medical robotic systems.For the amputee to control the artificial muscles, Shen is working on an electrical system that uses existing muscles to move the prosthesis. This electromyography neural interface reads the muscle-activating neural signal by placing electrodes on the surfaces of remaining muscles. Although the joints driven by these muscle have been removed for an amputee, the muscle signal is still there, which can generate the commands to drive the prosthesis.

Shen is also developing a fault-tolerant control structure for the electromyography controls, which is a kind of back-up system that reconfigures the controller in the event of failure to prevent falls.

He has successfully demonstrated the basic concept of the actuator and how to use it to drive a robotic joint, but more research remains before testing can begin.

Related Articles Read More >

BCI researchers report progress in prosthetic limb sensing
A patient stacks wooden blocks using a DEKA advanced prosthetic arm and hand.
3 technologies that will advance upper limb prosthetics
A patient controls a prosthetic arm and hand using Blue Arbor's RESTORE Neuromuscular Interface System as co-founder Alex Vaskov looks on.
Blue Arbor goes beneath the surface for better control of limb prosthetics
A photo of a 3D-printed arm cast.
3D printing tips for new functionality and maximum reimbursement with orthotics and prosthetics
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe