Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Engineers Borrow From Pastry Chefs in Creating Composites for Optical Devices

July 21, 2016 By Massachusetts Institute of Technology

Adapting an old trick used for centuries by both metalsmiths and pastry makers, a team of researchers at MIT has found a way to efficiently create composite materials containing hundreds of layers that are just atoms thick but span the full width of the material. The discovery could open up wide-ranging possibilities for designing new, easy-to-manufacture composites for optical devices, electronic systems, and high-tech materials.

The work is described this week in a paper in Science by Michael Strano, the Carbon P. Dubbs Professor in Chemical Engineering; postdoc Pingwei Liu; and 11 other MIT students, postdocs, and professors.

Materials such as graphene, a two-dimensional form of pure carbon, and carbon nanotubes, tiny cylinders that are essentially rolled-up graphene, are “some of the strongest, hardest materials we have available,” said Strano, because their atoms are held together entirely by carbon-carbon bonds, which are “the strongest nature gives us” for chemical bonds to work with. So, researchers have been searching for ways of using these nanomaterials to add great strength to composite materials, much the way steel bars are used to reinforce concrete.

The biggest obstacle has been finding ways to embed these materials within a matrix of another material in an orderly way. These tiny sheets and tubes have a strong tendency to clump together, so just stirring them into a batch of liquid resin before it sets doesn’t work at all. The MIT team’s insight was in finding a way to create large numbers of layers, stacked in a perfectly orderly way, without having to stack each layer individually.

Although the process is more complex than it sounds, at the heart of it is a technique similar to that used to make ultra-strong steel sword blades, as well as the puff pastry that’s in baklava and napoleons. A layer of material—be it steel, dough, or graphene—is spread out flat. Then, the material is doubled over on itself, pounded or rolled out, and then doubled over again, and again, and again.

With each fold, the number of layers doubles, thus producing an exponential increase in the layering. Just 20 simple folds would produce more than a million perfectly aligned layers.

Now, it doesn’t work out exactly that way on the nanoscale. In this research, rather than folding the material, the team cut the whole block—itself consisting of alternating layers of graphene and the composite material—into quarters, and then slid one quarter on top of another, quadrupling the number of layers, and then repeating the process. But the result was the same: a uniform stack of layers, quickly produced, and already embedded in the matrix material, in this case polycarbonate, to form a composite.

In their proof-of-concept tests, the MIT team produced composites with up to 320 layers of graphene embedded in them. They were able to demonstrate that even though the total amount of the graphene added to the material was minuscule—less than 1/10 of a percent by weight—it led to a clear-cut improvement in overall strength.

The team also found a way to make structured fibers from graphene, potentially enabling the creation of yarns and fabrics with embedded electronic functions, as well as yet another class of composites. The method uses a shearing mechanism, somewhat like a cheese slicer, to peel off layers of graphene in a way that causes them to roll up into a scroll-like shape, technically known as an Archimedean spiral.

One unexpected feature of the new layered composites, Strano says, is that the graphene layers, which are extremely electrically conductive, maintain their continuity all the way across their composite sample without any short-circuiting to the adjacent layers. So, for example, simply inserting an electrical probe into the stack to a certain precise depth would make it possible to uniquely “address” any one of the hundreds of layers. This could ultimately lead to new kinds of complex multilayered electronics, he says.

Related Articles Read More >

Biological Toolkit of Cells Assembled Like Legos
New Technology Keeps Eye On Babies’ Movement In The Womb
Robots Won’t Replace Teachers But Can Boost Children’s Education
Artificial Placenta Created In Laboratory

DeviceTalks Weekly.

May 13, 2022
Our Pre-Post-DeviceTalks Boston episode, also MedtronicTalks replay with Gastro CMO Austin Chiang
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech