Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Enhancing Lab-on-a-Chip Peristalsis with Electro-osmosis

May 10, 2016 By American Institute of Physics

If you’ve ever eaten food while upside down – and who hasn’t indulged this chimpanzee daydream? – you can thank the successive wave-like motions of peristalsis for keeping the chewed bolus down and ferrying it into your stomach. In mechanical microdevices, this method of transport moves fluids without a separate pump-saving precious space in lab-on-a-chip and futuristic organ-on-a-chip devices – but this transport method is difficult to finely control.

To remedy this, researchers at the Indian Institute of Technology’s Advanced Technology Development Center in Kharagpur, West Bengal have conducted lubrication theory-based analyses to explore the hydrodynamic effects of improving flow rate in pre-existing peristaltic hardware relying on an external electric field. Their research, which assesses the combined effects of electric fields and peristalsis on the channel flow rate, appears this week in Physics of Fluids, from AIP Publishing.

This is a diagram of electric fields employed for modification of electrolytic flow through peristalsis. (Credit: A. Bandopadhyay&S. Chakraborty /Univ. Rennes&Indian Institute of Technology Kharagpur)

“Through our theoretical analysis, we’ve shown that by keeping the same peristalsis hardware, we may obtain an enhanced on-the-fly controllability of the flow rate by augmenting the device with electric fields,” said Suman Charkraborty, a professor in the institute’s Mechanical Engineering Department, and the Head of its School of Medical Science and Technology.

According to Chakraborty, an electric field component can easily be implemented because existing microtubule fabrication often involves sputtering electrodes onto the ends of the tubes – when a field is switched on, these electrodes cause fluid flow by attracting charged fluid toward the compatible electrode.

This has the potential to aid researchers in studying targeted drug delivery, augmenting biophysical fluid transport in human bodies, and observing and controlling chemical reaction and mixing in surface-modulated fluid flow environments, Chakraborty said.

Future work for Chakraborty and his colleagues includes analyzing the motion of charged particles in the electroosmotically-modulated peristaltic environment – a tricky matter, due to the interactions between fluidic drag, fluid flow via the electric field, and electrophoretic particle motion. The researchers are also working to develop nanoscale energy harvesting, microfluidics-based portable kits for rapid medical diagnostics, and microfluidic tools to deepen our understanding of the physiological dynamics of living systems.

Find more information on the study here.

Related Articles Read More >

Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices
A Medtronic HVAD pump opened up to show the inner workings
FDA designates new Medtronic HVAD pump implant recall as Class I
Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age

DeviceTalks Weekly.

June 24, 2022
How innovative design, commercial strategy is building Cala Trio’s bioelectronic medicine market
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech