Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Exploring encapsulated ePTFE

June 23, 2016 By Rogene Evans

Heather Thompson | Senior Editor | Medical Design & Outsourcing |

Heather Thompson | Senior Editor | Medical Design & Outsourcing |

Expanded polytetrafluoroethylene (ePTFE) is a flexible, biocompatible material, used to cover stents and stent grafts. The lubricity, strength, and durability of the material makes it valuable during stent deployment and in situ. But as the manufacturing processes for it have improved, it is seeing renewed interest in other vascular applications, including transcatheter heart valves.

Material benefits in clinical use
The material’s ability to collapse and expand repeatedly is critical to its use in vascular applications. ePTFE can cycle millions of times without breaking or coming off the device, which makes it valuable in the stent deployment process and resistant to wear in the body. It can adapt to blood vessels and their natural pulsatile action. Those pressure pulses create flexion that an encapsulated device must withstand.

ePTFE also features varying permeability, enabling outgassing while keeping blood cells flowing. It is chemically inert and hydrophobic. And its microporous nature encourages tissue ingrowth. Research has shown that endothelial cells that line all blood vessels can adhere and grow on ePTFE surfaces.

The material is also easy to work with, because of its temperature stability and its achievable thinness. Internal and external layers of coating measure in the micron scale, meaning that while the structure is deployed, it enhances the ability to navigate the vasculature but does not add significant thickness or diameter to the primary device.

Meeting manufacturing needs
One of the traditional challenges of ePTFE is overcoming slippage during application to the stent. Encapsulation, rather than coating, solves the problem for cylindrical devices as well as complex geometries. The biocompatible material is applied via batch encapsulation to enable quick manufacture while maintaining quality and cost and time savings. The encapsulation process is suitable for stent structures and other long-term implantable devices.

One of the benefits of the encapsulation process is that it enables very thin coverage of the stent, down to 0.0005 in. The encapsulation process can also accommodate conical shapes, flared shapes, and double flared shapes.

The ability to encapsulate complex geometries is a critical development in manufacturing. It avoids the need to suture material to the metal: ePTFE sticks to itself around the metal of the stent, without delaminating or tearing.

A key advantage in the process is the time and cost savings it offers over traditional manufacturing methods. These methods include hand sewing bovine or porcine valves to polyester, for example. Such a process is long and labor-intensive, and garners the appropriate premium pricing. Further, as skilled as a hand sewer may be, a person cannot achieve micron level accuracy or achieve micron thicknesses. By contrast, in the time that it takes for 3 hand-sewn devices to be ready, the ePFTE encapsulation might produce hundreds of units that are substantially thinner.

What’s next
As minimally invasive vascular procedures advance, the catheter sizes used for valves and stents will get smaller. Encapsulated ePTFE can help innovators improve clinical outcomes, reduce costs, and reduce time to market.

Related Articles Read More >

Benefits of thermoplastic polyurethane films for wearable devices
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
A photo of the Agiliti NP Adjust Stretcher Pad.
Agiliti launches new stretcher support surfaces
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe