Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

First Blood-Brain Barrier Chip Using Stem Cells Developed by Ben-Gurion University Researchers

June 13, 2019 By Gurion University Researchers American Associates, Ben-Gurion University of the Negev

Researchers at Ben-Gurion University of the Negev (BGU) and Cedars-Sinai Medical Center in Los Angeles have, for the first time, duplicated a patient’s blood-brain barrier (BBB), creating a human BBB chip with stem cells, which can be used to develop personalized medicine and new techniques to research brain disorders.

The new research, published in the journal Cell Stem Cell, is a collaboration between Dr. Gad Vatine of BGU’s Regenerative Medicine and Stem Cell Research Center and Department of Physiology and Cell Biology and Dr. Clive N. Svendsen, of Cedars-Sinai Medical Center in Los Angeles.

The blood-brain barrier blocks toxins and other foreign substances in the bloodstream from entering brain tissue and causing damage. But it also can prevent therapeutic drugs from reaching the brain. Neurological disorders such as multiple sclerosis, epilepsy, Alzheimer’s disease, and Huntington’s disease, which collectively affect millions worldwide, have been linked to a defective blood-brain barrier.

In the study, the researchers genetically manipulated blood cells collected from an individual into stem cells (known as induced pluripotent stem cells), which can produce any type of cell. These are used to create the various cells that comprise the blood-brain barrier. The cells are placed on a microfluidic BBB organ-chip approximately the size of an AA battery, which contains tiny hollow channels lined with tens of thousands of living human cells and tissues. This living, micro-engineered environment recreates the natural physiology and mechanical forces that cells experience within the human body, including the BBB.

The living cells recreate a functioning BBB, including blocking entry of certain drugs. Significantly, when this blood-brain barrier was derived from cells of patients with Allan-Herndon-Dudley syndrome, a rare congenital neurological disorder, and Huntington’s disease patients, the barrier malfunctioned in the same way that it does in patients with these diseases.

“By combining patient-specific stem cells and organ-on-chip technology, we generated a personalized model of the human BBB,” says Dr. Vatine. “BBB-on-chips generated from several individuals allows the prediction of the best suited brain drug in a personalized manner. The study’s findings create dramatic new possibilities for precision medicine.”

This is of particular importance for neurological diseases like epilepsy or schizophrenia, for which several FDA-approved drugs are available, but current treatment selections are largely based on trial and error.

“By combining organ-chip technology and human iPSC-derived tissue, we have created a neurovascular unit that recapitulates complex BBB functions, provides a platform for modeling inheritable neurological disorders, and advances drug screening, as well as personalized medicine,” Dr. Vatine says.

Related Articles Read More >

Nanoscopic imaging showing human keratinocyte-matrix interaction.
These smart materials are key to advancing regenerative medicine
A series of before-and-after brain scans showing improvement in long COVID patients after hyperbaric oxygen therapy
Long COVID study finds potential in hyperbaric oxygen therapy
Rockwell Experience Center opens at Dean Kamen’s Advanced Regenerative Manufacturing Institute
What is microscale 3D printing? Lessons learned from Mayo Clinic
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe