Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Five Ways Bioengineers Want to Use 3-D Printing

August 11, 2016 By Cell Press

Now that 3-D printing has made it easier to generate custom-made prosthetics, bioengineers are looking ahead at manufacturing actual cellular material. Such technology could be the basis for personalized biomedical devices; tissue-engineered skin, cartilage, and bone; or even working bladders. In a Trends in Biotechnology special issue on biofabrication, publishing August 17, researchers review and consider the progress made in 3-D bioprinting and what might be possible in the decades, or years, ahead.

1. Made-to-Order Organs-on-a-Chip

“Organs-on-a-chip,” 3-D microengineered systems that mimic the structure and function of human tissue, are a strong contender in the race to deliver inexpensive and efficient personalized medicine. Lung, gut, and pancreatic tissue have already been grown from human stem cells on the chips, which allow researchers to study physiological differences in these cells between patients as well as screen for drugs. Manufacturing challenges exist to quickly expand the use of the technology, but 3-D printing could reduce the labor and costs necessary to build, seed, and meet the demand for chips.

2. Skin Manufacturing

Printed skin made from cells set down on a collagen gel showed the presence of intercellular connections and biologically normal cell markers 10 days after cultivation. In another study, researchers have been able to grow blood vessels in this sheet of cells. Skin bioprinting is closer to reality than one would think, but researchers are only at the beginning of considering the designs necessary to help patients, especially those with burns or chronic wounds.

3. Facial Reconstruction

While bone, cartilage, skin, muscle, blood vessels, and nerves have all been printed in the laboratory, constructing more complex designs that can be implanted in patients is still in development. Craniofascial reconstruction, which would benefit people with cancer or who have experienced facial injuries, seems to be an obvious candidate to pursue because of the amount of work already done on these cell types. In the short term, 3-D printed scaffolds could be used to improve spot defects in the jaw or other areas of the face.

This photograph shows high throughput bioprinting of cells into microwells. (Credit: Ozbolat Lab at Penn State)

4. Multi-Organ Drug Screens

3-D bioprinting is demonstrating that precise models can improve the way we evaluate new drugs, such as by generating “organoids” made up of multiple cell types, as well as a tumor model with engineered blood vessels. While such approaches could make it possible to quickly monitor drug interactions in real time in multiple organs, much more iteration (e.g., adding blood vessels, connecting organ models) will be needed to realize this vision.

5. Plug-in Blood Vessels

Efforts to create 3-D blood vessel networks within bioengineered tissues–which would be necessary to ensure tissue survival after implantation and an accurate replication of human anatomy–have focused on stacking 2-D layers of cells or bioprinting 3-D networks, which allows for high levels of spatial control. One challenge is to create tissues with blood vessel networks that could directly connect to a patient’s arteries or veins.

Related Articles Read More >

Biological Toolkit of Cells Assembled Like Legos
New Technology Keeps Eye On Babies’ Movement In The Womb
Robots Won’t Replace Teachers But Can Boost Children’s Education
Artificial Placenta Created In Laboratory

DeviceTalks Weekly.

August 12, 2022
DTW – Medtronic’s Mauri brings years of patient care to top clinical, regulatory, scientific post
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech