Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Get Ready: Your Future Surgery May Use an Automated, Robotic Drill

May 1, 2017 By University of Utah Health

A computer-driven automated drill, similar to those used to machine auto parts, could play a pivotal role in future surgical procedures. The new machine can make one type of complex cranial surgery 50 times faster than standard procedures, decreasing from two hours to two and a half minutes. Researchers at the University of Utah developed the drill that produces fast, clean, and safe cuts, reducing the time the wound is open and the patient is anesthetized, thereby decreasing the incidence of infection, human error, and surgical cost. The findings were reported online in the May 1 issue of Neurosurgical Focus.

To perform complex surgeries, especially cranial surgeries, surgeons typically use hand drills to make intricate openings, adding hours to a procedure. “It was like doing archaeology,” says William Couldwell, M.D., Ph.D., a neurosurgeon at U of U Health. “We had to slowly take away the bone to avoid sensitive structures.”

The automated drill reduces the time for bone removal from 2 hours using a hand drill to 2.5 minutes. (Credit: University of Utah)

He saw a need for a device that could alleviate this burden and make the process more efficient. “We knew the technology was already available in the machine world, but no one ever applied it to medical applications.” Couldwell led an interdisciplinary team at the U to bring the drill into reality.

“My expertise is dealing with the removal of metal quickly, so a neurosurgical drill was a new concept for me,” explained A. K. Balaji, Ph.D., associate professor in mechanical engineering at the U. “I was interested in developing a low-cost drill that could do a lot of the grunt work to reduce surgeon fatigue.”

The team developed the drill from scratch to meet the needs of the neurosurgical unit, as well as developed software that sets a safe cutting path.

First, the patient is imaged using a CT scan to gather bone data and identify the exact location of sensitive structures, such as nerves and major veins and arteries that must be avoided. Surgeons use this information to program the cutting path of the drill. “The software lets the surgeon choose the optimum path from point A to point B, like Google Maps,” says Balaji. In addition, the surgeon can program safety barriers along the cutting path within 1 mm of sensitive structures. “Think of the barriers like a construction zone,” says Balaji. “You slow down to navigate it safety.”

The drill does the heavy lifting by removing most of the bone, similar to a mill, accurately and rapidly. “It’s like Monster Garage, except instead of machining a part, we are machining the skull,” says Caldwell.

Couldwell applied the new drill to the translabyrinthine opening, a particularly complex jigsaw-like shape that circumnavigates the ear. “The access is through the temporal bone which is a hard bone with strange angles,” says Balaji. According to Couldwell, this particular cut requires a lot of experience and skill to perform it safely. “We thought this procedure would be a perfect proof of principle to show the accuracy of this technology,” he says.

The translabyrinthine surgery is performed thousands of times a year to expose slow-growing, benign tumors that form around the auditory nerves. This cut is not only difficult, the cutting path also must avoid several sensitive features, including facial nerves and the venous sinus, a large vein that drains blood from the brain. Risks of this surgery include loss of facial movement.

The device also has an automatic emergency shut-off switch. During surgery, the facial nerve is monitored for any signs of irritation. “If the drill gets too close to the facial nerve and irritation is monitored, the drill automatically turns off,” says Couldwell.

The new drill could reduce the duration of this complex procedure from 2 hours for hand-drilling by an experienced surgeon to 2.5 minutes. The shorter surgery is expected to lower the chance of infection and improve post-operative recovery. It also has potential to substantially reduce the cost of surgery, because it shaves hours from operating room time.

The research team has demonstrated the safety and speed of the drill by performing this complex cut, but Couldwell stresses that it can be applied to many other surgical procedures. “This drill can be used for a variety of surgeries, like machining the perfect receptacle opening in the bone for a hip implant,” he says.

The varied application of the drill emphasizes another factor that drew Balaji to the project. “I was motivated by the fact that this technology could democratize health care by leveling the playing field so more people can receive quality care,” he says.

Couldwell and his team are examining opportunities to commercialize the drill to ensure that it is more widely available for other surgical procedures.

Related Articles Read More >

An illustration showing the Artedrone Sasha thrombectomy catheter approaching a blood clot.
This microrobot system is designed to float inside a stroke patient for autonomous thrombectomy
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
A photo showing the Dualto Energy System's modular design with two generators stacked for two users at a time.
What J&J MedTech’s new Dualto says about the OR of the future — and Ottava
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe