Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Handheld Scanner Reveals Vascularization in Psoriasis Patients

June 5, 2017 By Helmholtz Zentrum München - German Research Center for Environmental Health

A newly developed tissue scanner allows looking under the skin of psoriasis patients. (Credit: Helmholtz Zentrum München)

A newly developed tissue scanner allows looking under the skin of psoriasis patients. This provides clinically relevant information, such as the structure of skin layers and blood vessels, without the need for contrast agents or radiation exposure. A team of researchers from Helmholtz Zentrum München and the Technical University of Munich (TUM) recently introduced the technology in Nature Biomedical Engineering.

Psoriasis (Psoriasis vulgaris) is an inflammatory skin disease that is characterized by small to palm-sized patches of severely scaling skin. The disease is estimated to affect between ten and fifteen million people in the European Union.

Currently, physicians evaluate the severity of the disease based on visual assessment of features of the skin surface, such as redness or thickness of the flaking skin. “Unfortunately, these standards miss all parameters that lie below the surface of the skin, and may be subjective,” Dr. Juan Aguirre points out. “Knowing the structure of the skin and vessels before treatment can provide the physician with useful information,” explains the group leader at the Institute of Biological and Medical Imaging (IBMI) at the Helmholtz Zentrum München.*

A look under the skin

In order to provide clinicians with this information, Aguirre and his team developed a new technique that gets under the skin. It bears the name RSOM and works as follows: A weak laser pulse excites the tissue of interest, which then absorbs energy and heats up minimally. This causes momentary tissue expansion, which generates ultrasound waves. The scientists measure these ultrasound signals and use this information to reconstruct a high resolution image of what lies under the skin.

High tech that fits in the hand

While developing the method, the scientists were able to reduce the size of the scanner to a handheld device. “This technology, which is easy to use and does not involve any radiation exposure or contrast agent, is allowing us to acquire the first new insights into the disease mechanisms. It also facilitates treatment decisions for the physicians,” explains Prof. Dr. Vasilis Ntziachristos, Director of the IBMI at the Helmholtz Zentrum München and Chair of Biological Imaging at the Technical University of Munich.

In the recently published study, the scientists demonstrated RSOM’s performance by examining cutaneous and subcutaneous tissue from psoriasis patients. RSOM allowed them to determine several characteristics of psoriasis and inflammation, including skin thickness, capillary density, number of vessels, and total blood volume in the skin. They compiled these to define a novel clinical index for assessing psoriasis severity that may be superior to the current clinical standard because the new index also takes into account characteristics below the skin surface.

The researchers plan to use the same imaging method to assess other diseases such as skin cancer or diabetes in the future. Patients with diabetes often suffer from damaged blood vessels that, if detected early enough, may allow earlier treatment and therefore greater efficacy.

Related Articles Read More >

An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
Q&A with Darshin Patel, who led the Edwards Lifesciences Sapien M3 TMVR system’s development
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
A photo of the Northwestern University pacemaker surrounded by grains of rice for scale [Photo courtesy of Northwestern]
Researchers develop tiny pacemaker that’s injectable and bioabsorbable
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's dock being placed in the heart. [Image courtesy of Edwards Lifesciences]
The Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement system uses nitinol in a new way
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe