Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Hydraulic Forces Help to Fill the Heart

March 15, 2017 By Karolinska Institutet

(Credit: Karolinska Institutet)

Researchers at Karolinska Institutet and KTH Royal Institute of Technology in Sweden have contributed to a recent discovery that the heart is filled with the aid of hydraulic forces, the same as those involved in hydraulic brakes in cars. The findings, which are presented in the journal Scientific Reports, open avenues for completely new approaches to the treatment of heart failure.

The mechanisms that cause blood to flow into the ventricles of the heart during the filling, or diastolic, phase are only partly understood. While the protein titin in the heart muscle cells is known to operate as a spring that releases elastic energy during filling, new research at Karolinska Institutet and KTH suggests that hydraulic forces are equally instrumental.

Hydraulic force, which is the pressure a liquid exerts on an area, is exploited in all kinds of mechanical processes, such as car brakes and jacks. In the body, the force is affected by the blood pressure inside the heart and the size difference between the atria and ventricles. During diastole, the valve between the atrium and the ventricle opens, equalising the blood pressure in both chambers. The geometry of the heart thus determines the magnitude of the force. Hydraulic forces that help the heart’s chambers to fill with blood arise as a natural consequence of the fact that the atrium is smaller than the ventricle.

Using cardiovascular magnetic resonance (CMR) imaging to measure the size of both chambers during diastole in healthy participants, the researchers found that the atrium is smaller effectively throughout the filling process.

“Although this might seem simple and obvious, the impact of the hydraulic force on the heart’s filling pattern has been overlooked,” says Dr. Martin Ugander, a physician and associate professor who heads a research group in clinical physiology at Karolinska Institutet. “Our observation is exciting since it can lead to new types of therapies for heart failure involving trying to reduce the size of the atrium.”

Heart failure is a common condition in which the heart is unable to pump sufficient quantities of blood around the body. Many patients have disorders of the filling phase, often in combination with an enlarged atrium. If the atrium gets larger in proportion to the ventricle, it reduces the hydraulic force and thus the heart’s ability to be filled with blood.

“Much of the focus has been on the ventricular function in heart failure patients,” says Dr. Elira Maksuti at KTH’s Medical Imaging Unit and recent PhD. from KI’s and KTH’s joint doctoral programme in medical technology. “We think it can be an important part of diagnosis and treatment to measure both the atrium and ventricle to find out their relative dimensions.”

Related Articles Read More >

A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
This is a Boston Scientific illustration of its Eluvia drug-eluting stent for treating peripheral artery disease or PAD.
How Boston Scientific is advancing its PAD-treating drug-eluting stent
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
Camgenium and Cardiac Tech partner on Pace-Protect safety device
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe