Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

IBM and The Institute of Bioengineering and Nanotechnology Find Breakthrough for MRSA Treatment

April 3, 2011 By IBM

SAN JOSE, Calif.

–

04 Apr 2011:

Researchers from IBM (NYSE: IBM) and the Institute of Bioengineering and Nanotechnology discovered a nanomedicine breakthrough in which new types of polymers were shown to physically detect and destroy antibiotic-resistant bacteria and infectious diseases like Methicillin-resistant Staphylococcus aureus, known as MRSA.

Discovered by applying principles used in semiconductor manufacturing, these nanostructures are physically attracted to infected cells like a magnet, allowing them to selectively eradicate difficult to treat bacteria without destroying healthy cells around them. These agents also prevent the bacteria from developing drug resistance by actually breaking through the bacterial cell wall and membrane, a fundamentally different mode of attack compared to traditional antibiotics.  

MRSA is just one type of dangerous bacteria that is commonly found on the skin and easily contracted in places like gyms, schools and hospitals where people are in close contact. In 2005, MRSA was responsible for nearly 95,000 serious infections, and associated with almost 19,000 hospital stay-related deaths in the United States.

The challenge with infections like MRSA is two fold. First, drug resistance occurs because microorganisms are able to evolve to effectively resist antibiotics because current treatments leave their cell wall and membrane largely undamaged. Additionally, the high doses of antibiotics needed to kill such an infection indiscriminately destroy healthy red blood cells in addition to contaminated ones. 

“The number of bacteria in the palm of a hand outnumbers the entire human population,” said Dr. James Hedrick, Advanced Organic Materials Scientist, IBM Research – Almaden. “With this discovery we’ve been able to leverage decades of materials development traditionally used for semiconductor technologies to create an entirely new drug delivery mechanism that could make them more specific and effective.” 

If commercially manufactured, these biodegradable nanostructures could be injected directly into the body or applied topically to the skin, treating skin infections through consumer products like deodorant, soap, hand sanitizer, table wipes and preservatives, as well as be used to help heal wounds, tuberculosis and lung infections. 

“Using our novel nanostructures, we can offer a viable therapeutic solution for the treatment of MRSA and other infectious diseases. This exciting discovery effectively integrates our capabilities in biomedical sciences and materials research to address key issues in conventional drug delivery,” said Dr. Yiyan Yang, Group Leader, Institute of Bioengineering and Nanotechnology, Singapore. 

How it Works

The human body’s immune system is designed to protect us from harmful substances, both inside and out, but for a variety of reasons, many of today’s conventional antibiotics are either rejected by the body or have a limited success rate in treating drug-resistant bacteria. The antimicrobial agents developed by IBM Research and the Institute of Bioengineering and Nanotechnology are specifically designed to target an infected area to allow for a systemic delivery of the drug. 

Once these polymers come into contact with water in or on the body, they self assemble into a new polymer structure that is designed to target bacteria membranes based on electrostatic interaction and break through their cell membranes and walls. The physical nature of this action prevents bacteria from developing resistance to these nanoparticles. 

The electric charge naturally found in cells is important because the new polymer structures are attracted only to the infected areas while preserving the healthy red blood cells the body needs to transport oxygen throughout the body and combat bacteria. 

Unlike most antimicrobial materials, these are biodegradable, which enhances their potential application because they are naturally eliminated from the body (rather than remaining behind and accumulating in organs). 

The antimicrobial polymers created by IBM Research and the Institute of Bioengineering and Nanotechnology and were tested against clinical microbial samples by the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine and Zhejiang University in China. The full research paper was recently published in the peer-reviewed journal Nature Chemistry.  

Researchers from IBM are already applying principles from nanotechnology to create potential medical innovations like the DNA Transistor and 3-D MRI. Most recently they have been working on a one step point-of-care-diagnostic test based on an innovative silicon chip that requires less sample volume, can be significantly faster, portable, easy to use, and can test for many diseases. Dubbed “Lab on a Chip,” the results are so quick and accurate that a small sample of a patient’s blood could be tested immediately following a heart attack to enable the doctor to quickly take a course of action to help the patient survive. 

For more information about how IBM is working to help make healthcare smarter, please visit: ibm.com/smarterplanet/healthcare or ibm.com/research. 

About the Institute of Bioengineering and Nanotechnology

Established in 2003, the Institute of Bioengineering and Nanotechnology (IBN) conducts cutting-edge research geared towards linking multiple disciplines across all fields in engineering, science and medicine to produce research breakthroughs that will improve healthcare and quality of life.

 

 

SOURCE

Related Articles Read More >

Dexcom One
How Dexcom’s portfolio goes beyond highly-anticipated next-gen G7
A portrait of Stryker executive Siddarth Satish
How Stryker includes users for product design in the digital age
A Medtronic HVAD pump opened up to show the inner workings
Medtronic investigates HVAD pump welds after patient deaths
Galien Foundation 2022 nominees
18 of the world’s most innovative medical technologies

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech