Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Implantable Slimming Aid

November 26, 2013 By ETH Zurich

Gene network regulates blood-fat levels

Implanted designer cells engineered with a synthetic anti-obesity gene network constantly score the blood fat level of the animals and coordinate excessive blood fat levels to appetite suppression thereby reducing food intake and body weight of diet-induced obese mice on an all-you-can-eat 60 percent fat diet. (Illustration shows diet-induced obese mice of the Jackson Laboratory.) (Credit: Graphics: M. Fussenegger/mice photo: Jackson Lab)Humankind has a weight problem – and not only in the industrialized nations, either: the growing prosperity in many Asian or Latin American countries goes hand in hand with a way of life that quite literally has hefty consequences. According to the WHO, over half the population in many industrialized nations is overweight, one in three people extremely so. Not only is high-calorie and fatty food a lifetime on the hips, backside and stomach; it also leaves traces in the blood, where various fats ingested via food circulate. Increased blood-fat values are also regarded as a risk factor for heart attacks and strokes.

Genetic Regulatory Circuit Monitors Blood Fat
The research group headed by ETH-Zurich professor Martin Fussenegger from the Department of Biosystems Science and Engineering in Basel has now developed an early warning system and treatment: an implantable genetic circuit mainly composed of human gene components. On the one hand, it constantly monitors the circulating fat levels in the blood. On the other hand, it has a feed-back function and forms a messenger substance in response to excessively high blood-fat levels that conveys a sense of satiety to the body.

In order to construct this highly complex regulatory circuit, the biotechnologists skilfully combined different genes that produce particular proteins and reaction steps. They implanted the construct in human cells, which they then inserted into tiny capsules.

The researchers studied obese mice that had been fed fatty food. After the capsules with the gene regulatory circuit had been implanted in the animals and intervened due to the excessive levels, the obese mice stopped eating and their bodyweight dropped noticeably as a result. As the blood-fat levels also returned to normal, the regulatory circuit stopped producing the satiety signal.

“The mice lost weight although we kept giving them as much high-calorie food as they could eat,” stresses Fussenegger. The animals ate less because the implant signalised a feeling of satiety to them. Mice that received normal animal feed with a five-percent fat content did not lose any weight or reduce their intake of food, says the biotechnologist.

Sensor for Different Dietary Fats
One major advantage of the new synthetic regulatory circuit is the fact that it is not only able to measure one sort of fat, but rather several saturated and unsaturated animal and vegetable fats that are ingested with food at once. However, this development cannot simply be transferred to humans. It will take many years to develop a suitable product. Nonetheless, Fussenegger can certainly envisage that one day obese people with a body mass index of way over thirty could have such a gene network implanted to help them lose weight. Fussenegger sees the development as a possible alternative to surgical interventions such as liposuction or gastric bands. “The advantage of our implant would be that it can be used without such invasive interventions.” Another merit: instead of intervening in the progression of a disease that is difficult to regulate, it has a preventive effect and exploits the natural human satiety mechanism.

This gene network is one of the most complex that Fussenegger and his team have constructed to date and was made possible thanks to the biotechnologist’s years of experience in the field. It is not the first time he and his team have succeeded in constructing such a complex feedback regulatory circuit: a number of years ago, they produced an implant that can also be used to combat gout via a feedback regulatory circuit.

For more information, visit ETH Zurich.

Related Articles Read More >

A portrait of ResMed President and COO Rob Douglas
ResMed finds a solution to semiconductor shortage, as well as some humor in it
Johnson & Johnson Office of Digital Innovation Leader Peter Schulam
Imagining the future of cloud-connected medical devices with Johnson & Johnson leaders
Withings Body Scan
Withings plans launch for Body Scan smart scale platform
BinaxNow COVID-19 Ag Card
Time recognizes Abbott offerings among this year’s 100 best inventions

DeviceTalks Weekly.

June 24, 2022
How innovative design, commercial strategy is building Cala Trio’s bioelectronic medicine market
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech