Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Implants Sterilized with Oxygen – Could it Work?

April 29, 2016 By University of Bath

International researchers led by the University of Bath have demonstrated a cheap, effective and environmentally-friendly way to sterilise medical implants without changing their properties, in contrast to some techniques. This inexpensive technology could save time and money while effectively sterilising medical implants, does not require extensive training and produces no waste products

Scientists from the University of Bath’s Department of Pharmacy & Pharmacology and Centre for Regenerative Medicine and from the Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil, showed that ozone gas, obtained by passing electricity through oxygen, effectively sterilises one of the most common types of polymer used in medical implants.

Polymer implants, such as screws, pins and stents, are commonly used in surgical treatments, and there is an increasing use of implantable polymers in fields such as drug delivery, regenerative medicine and tissue engineering.

These materials must be sterile before use, but some methods of sterilisation alter their physical or chemical properties, potentially reducing performance.

The researchers showed that exposing the implants to as few as two controlled ‘pulses’ of ozone gas could sterilise the polymer, called poly(lactic-co-glycolic acid) (PLGA), killing spores of the Geobacillus stearothermophilus bacteria, the most common biological indicator used for validation of sterilisation processes.

Ozone treatment caused no changes in the PLGA and no loss of function, with cells still able to grow on the polymer scaffold, as they would in treatments.

This contrasts to methods such as gamma or electron beam radiation which are expensive and can damage the polymer. Other techniques also include risks to the polymer due to the heat, pressure and toxicity involved.

Ozone is cheap, safe and environmentally friendly because its only by-product is atmospheric oxygen, and is able to kill viruses, bacteria and fungi.

Dr Paul De Bank, Lecturer in Pharmaceutics at the University of Bath, said: “A significant worldwide effort is being made to create implantable polymeric matrices for a number of medical and surgical applications.

“Maintaining sterile manufacturing facilities is extremely costly, so the ideal scenario is to sterilise the matrix post-manufacture. Unfortunately, many sterilisation techniques adversely affect the physical or chemical properties of the materials used in the scaffolds, and this can alter their overall performance.

“We decided to investigate pulsed ozone gas as an alternative sterilisation method and chose PLGA as it’s perhaps the most widely used implantable polymer.

“We decided to look at nanofibers specifically as they are extremely fine and allowed us to easily determine if the sterilisation treatment affected the scaffold’s structure. The fact that ozone performed so well suggests it could be routinely used to sterilise not only PLGA, but a wide range of materials used in clinical implants.”

Carolina Rediguieri, a PhD student from São Paulo who carried out the work during a six month visit to Dr De Bank’s laboratory in Bath, said: “Sterility is a critical attribute of implantable materials that needs to be met in order to be applied in vivo.

“Our findings suggest that sterilisation by ozone gas is very likely to work for other implantable polymers as well, especially other polyesters.”

The study Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds is published in the journal Tissue Engineering Part C: Methods.

Related Articles Read More >

Min-Vasive Medtech: Live interviews and audience Q&As with minimally invasive engineers from Edwards Lifesciences, Jupiter Endo and Compremium
This is a screenshot of the remote robotic surgery technical guidelines appearing in the World Journal of Surgery.
New technical guidelines set to advance remote robotic surgery
An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe