Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Improved AI-Based Tool Increases Accuracy of Schizophrenia Diagnosis

February 1, 2019 By Andrew Lyle, University of Alberta

A tool developed by University of Alberta researchers using machine learning diagnoses schizophrenia more accurately than other AI-based systems, according to a new study.

The tool, called EMPaSchiz (Ensemble algorithm with Multiple Parcellations for Schizophrenia prediction), examined brain scans from patients who were diagnosed with schizophrenia and predicted the diagnosis with 87 per cent accuracy.

The finding follows on a previous study in 2017 in which U of A and IBM researchers developed a tool capable of predicting schizophrenia with 74 per cent accuracy, and a study last year in which medical researchers used machine learning to predict with 82 per cent accuracy whether a patient would respond to risperidone, an antipsychotic medication.

“Schizophrenia is characterized by a constellation of symptoms that might co-occur in patients. Two individuals with the same diagnosis might still present different symptoms. This often leads to misdiagnosis,” said Sunil Kalmady, a post-doctoral fellow at the U of A who led the study.

“Machine learning, in this case, is able to drive an evidence-based approach that looks at thousands of features in a brain scan to lead to an optimal prediction,” added Kalmady.

“Moreover, there are ways to estimate how accurate this tool will be and how often it will provide the correct diagnosis,” said computing scientist Russ Greiner, who supervised Kalmady’s research along with psychiatry professor Andrew Greenshaw.

The researchers noted EMPaSchiz is one of the first machine learning tools trained exclusively on data from patients who were diagnosed but not yet taking any medication to treat their illness, which could make it more valuable in the early stages of diagnosis.

“Mental health disorders are highly complex in terms of causes and manifestation of symptoms,” said Greenshaw. “Machine learning and future AI are approaches that enable a multi-dimensional, data-driven inroad that captures the level of complexity and objectivity that we need to unravel the wicked problems of understanding mental illness.”

The paper, “Towards Artificial Intelligence in Mental Health by Improving Schizophrenia Prediction With Multiple Brain Parcellation Ensemble-Learning,” was published in NPJ Schizophrenia.

Related Articles Read More >

DeepWell Digital Therapeutics Mike Wilson Ryan Douglas
How DeepWell is developing video games as tools for treating medical conditions
A woman with a small, handheld device in her lap with tubes that look like earphones plugged into her ears.
Ear-puffing device for migraine treatment wins FDA breakthrough designation
Abbott
Abbott launches upgraded digital health app for neurostimulation
Catheter delivery could enable better brain implants: Synchron’s neuroscience chief explains how

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech