Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Laser-Imaging Technology Provides Improved Method for Peering Inside Living Creatures

October 30, 2017 By Emily Velasco, Phys.org

Jiamiao Yang, a postdoctoral scholar in the Caltech Optical Imaging Laboratory, adjusts a photoacoustic microscope. (Credit: Caltech)

Caltech engineers have improved a technique for taking three-dimensional (3-D) microscopic images of tissue, allowing them to see inside living creatures with greater precision than before.

The technology, called 3-D photoacoustic microscopy (PAM), bombards tissue with a laser beam. As the energy in the laser light is absorbed, it causes the tissue to vibrate ultrasonically. Those vibrations are picked up by sensors and used to assemble an image of the tissue’s internal structures in a process similar to ultrasound imaging.

The technique was invented by Lihong Wang, Caltech’s Bren Professor of Medical Engineering and Electrical Engineering, and his team in the Caltech Optical Imaging Laboratory, part of the Andrew and Peggy Cherng Department of Medical Engineering in the Division of Engineering and Applied Science.

One constraint of the technology to this point has been its limited depth of field—the range at which objects are in focus. This phenomenon would be familiar to anyone who has used a camera. When the camera is focused on a nearby object, objects in the background will be blurry. When the camera is focused on something in the distance, nearby objects are blurry.

While such blurring can add an artsy flair on Instagram, it is not desirable in 3-D medical imaging, so Wang and his team set out to tweak their technology to minimize the effect. In a paper published in the October 3 issue of Nature Communications, they describe a modified form of the technology they’re calling spatially invariant resolution photoacoustic microscopy, or SIR-PAM.

SIR-PAM builds on previous PAM technology by pre-processing the laser beam with a specialized optical chip found in certain types of TVs and projectors. The chip splits the beam in two, and each of those beams bombards the object to be imaged from a different angle.

When the beams cross inside the object, they create precise interference patterns that provide acoustic signatures needed to construct a clear 3-D image of internal structures throughout the scanned area.

These modifications give SIR-PAM a depth of field 32 times larger than what PAM could achieve while also improving its resolution to as small as 90 nanometers (1/1000th the width of a human hair).

“This gives us the ability to look through opaque materials and see what’s inside,” Wang says. “It’s like an extension of the human eye, like Superman’s X-ray vision.”

“Photoacoustics is unique,” he says. “It can be scaled to image everything from structures inside a cell all the way up to an entire organism, affording an unprecedented opportunity for omniscale biological research with consistent imaging contrast.”

The paper is titled “Motionless volumetric photoacoustic microscopy with spatially invariant resolution.”

Related Articles Read More >

A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
An illustration of a neurosurgeon using a robotic endoscope to remove a brain tumor.
MDO Nitinol Innovation Special Report
A photo of Highridge Medical CEO Rebecca Whitney.
Highridge Medical is betting on this spine tech
A photo of the miniature Auxilium Biotechnologies implants made on the International Space Station.
Implants 3D-printed in space could enable nerve regeneration
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe