Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Machine Learning Approach for Low-Dose CT Imaging Yields Superior Results

June 12, 2019 By Rensselaer Polytechnic Institute

Machine learning has the potential to vastly advance medical imaging, particularly computerized tomography (CT) scanning, by reducing radiation exposure and improving image quality.

Those new research findings were just published in Nature Machine Intelligence by engineers at Rensselaer Polytechnic Institute and radiologists at Massachusetts General Hospital and Harvard Medical School.

According to the research team, the results published in this high-impact journal make a strong case for harnessing the power of artificial intelligence to improve low-dose CT scans.

“Radiation dose has been a significant issue for patients undergoing CT scans. Our machine learning technique is superior, or, at the very least, comparable, to the iterative techniques used in this study for enabling low-radiation dose CT,” said Ge Wang, the Clark & Crossan Endowed Chair Professor of biomedical engineering at Rensselaer, and a corresponding author on this paper. “It’s a high-level conclusion that carries a powerful message. It’s time for machine learning to rapidly take off and, hopefully, take over.”

Low-dose CT imaging techniques have been a significant focus over the past several years in an effort to alleviate concerns about patient exposure to X-ray radiation associated with widely used CT scans. However, decreasing radiation can decrease image quality.

To solve that, engineers worldwide have designed iterative reconstruction techniques to help sift through and remove interferences from CT images. The problem, Wang said, is that those algorithms sometimes remove useful information or falsely alter the image.

The team set out to address this persistent challenge using a machine learning framework. Specifically, they developed a dedicated deep neural network and compared their best results to the best of what three major commercial CT scanners could produce with iterative reconstruction techniques.

This work was performed in close collaboration with Dr. Mannudeep Kalra, a professor of radiology at Massachusetts General Hospital and Harvard Medical School, who was also a corresponding author on the paper.

The researchers were looking to determine how the performance of their deep learning approach compared to the selected representative iterative algorithms currently being used clinically.

Several radiologists from Massachusetts General Hospital and Harvard Medical School assessed all of the CT images. The deep learning algorithms developed by the Rensselaer team performed as well as, or better than, those current iterative techniques in an overwhelming majority of cases, Wang said.

Researchers found that their deep learning method is also much quicker, and allows the radiologists to fine-tune the images according to clinical requirements, Dr. Kalra said.

These positive results were realized without access to the original, or raw, data from all the CT scanners. Wang pointed out that if original CT data is made available, a more specialized deep learning algorithm should perform even better.

“This has radiologists in the loop,” Wang said. “In other words, this means that we can integrate machine intelligence and human intelligence together in the deep learning framework, facilitating clinical translation.”

He said that these results confirm that deep learning could help produce safer, more accurate CT images while also running more rapidly than iterative algorithms.

“We are excited to show the community that machine learning methods are potentially better than the traditional methods,” said Wang. “It sends the scientific community a strong signal. We should go for machine learning.”

This research by Wang’s team is among the significant advancements consistently being made by faculty in the Biomedical Imaging Center within the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer.

“Professor Wang’s work is an excellent example of how advances in artificial intelligence, and machine and deep learning, can improve biomedical tools and practices by addressing hard problems—in this case helping to provide high-quality CT images using a lower radiation dose.  Transformative developments from these collaborative teams will lead to more precise and personalized medicine,” said Deepak Vashishth, director of CBIS.

Hongming Shan, a postdoctoral researcher at Rensselaer, is the first author of the paper. Uwe Kruger, professor of practice in biomedical engineering at Rensselaer, was instrumental when it came to statistical analysis in this project. Radiologists from Massachusetts General Hospital in Boston and Ramathibodi Hospital in Bangkok are also coauthors on this research. This work was supported in part by a grant from the National Institute of Biomedical Imaging and Bioengineering within the National Institutes of Health.

Related Articles Read More >

CeQur Simplicity
CeQur is launching a discreet, convenient ‘wearable insulin pen’
Blackrock's Utah array is a miniature array of electrodes for sensing brain signals
Blackrock Neurotech and Pitt work on first at-home BCI system for remote trials
Engineer inspecting artificial hip joint parts in quality control department in orthopaedic factory
Deburring and finishing for beautiful, functional medical devices
A Medtronic HVAD pump opened up to show the inner workings
FDA designates new Medtronic HVAD pump implant recall as Class I

DeviceTalks Weekly.

July 1, 2022
Boston Scientific CEO Mike Mahoney on building a corporate culture that drives high growth results
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech