Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Machine-Learning Discovery And Design Of Membrane-Active Peptides For Biomedicine

November 15, 2016 By University of Illinois College of Agricultural, Consumer, and Environmental Sciences

There are approximately 1,100 known antimicrobial peptides (AMP) with diverse sequences that can permeate microbial membranes. To help discover the “blueprint” for natural AMP sequences, researchers from the University of Illinois at Urbana-Champaign and the University of California, Los Angeles, have developed a new machine learning approach to discover and design alpha-helical membrane active peptides based on their physicochemical properties.

“In this work, we have trained a machine learning classifier–known as a support vector machine–to recognize membrane activity and experimentally calibrated the recognition metric by peptide synthesis and characterization,” explained Andrew Ferguson, an assistant professor of materials science and engineering at Illinois. “We use machine learning to not only discover new membrane active peptides, but to also identify membrane activity in known peptides with previously defined functions leading us to discover membrane activity in diverse and unexpected peptide families.

In this image the grey crosses are peptides scanned projected into a 2-D plane spanned by the sequence distance to a known antimicrobial peptide (x-axis) and prediction confidence of the classifier that the peptide is membrane active (y-axis). We detect membrane activity in diverse classes of peptides including neuropeptides, topogenic peptides, and viral fusion proteins. Membrane activity is mediated through the induction if negative Guassian curvature in the membrane (inset). (Credit: University of Illinois).

“Since getting cargo into a cell is important for many applications, we anticipate that this tool can have broad biomedical implications including in immunotherapy and in broad-spectrum membrane-active antimicrobial peptides to combat the rising incidence of drug resistance, design of cationic cell-penetrating peptides for nucleic acid transfection into cells, and in targeting and permeating anticancer therapeutics into tumors,” added Ferguson, who was the senior computational investigator for the project.

In this collaborative work, the Illinois researchers developed the computational innovations, with the experimental testing of the predictions accomplished at UCLA. The results, which highlight the difference between the efficacy of an antimicrobial and its recognizability as such, are surprising.

“AMPs do not share a common core structure, but tend to be short, cationic , and amphiphilic,” Ferguson said. “By training our machine learning classifier over a training set comprising peptides with known antimicrobial activity (hits) and decoy peptides with no activity (misses), the classifier learned the physical and chemical properties of a peptide that make for good membrane activity. We anticipated that the classifier would learn to discriminate the ‘antimicrobial-ness’ of a particular peptide sequence, but through experimental testing of its predictions we found that it actually learned a much more general and physical rule to discriminate peptides based on membrane activity. In effect, the classifier learned membrane activity as the underlying physical determinant of antimicrobial activity within the training set, and allows us to use our classifier to discover membrane active peptides in other diverse peptide classes.”

“Using the SVM as an efficient discovery tool for membrane activity, we performed a guided search of peptide sequence space to discover new membrane active peptides that would be difficult for nature to evolve by simple mutation from existing alpha-helical membrane active peptides.,” stated Ernest Y. Lee, first author of the paper, “Mapping membrane activity in undiscovered peptide sequence space using machine learning,” appearing in the Proceedings of the National Academy of Sciences.

“What emerges is a diverse taxonomy of sequences that are expected to be not only just as membrane-active as known antimicrobial peptides, but also have a broad range of putative primary functions beyond antimicrobial activity including neuropeptides, viral fusion proteins, topogenic peptides, and amyloids,” said Gerard Wong, a professor of bioengineering at UCLA and senior experimental investigator on the study. “Had their primary functions been undiscovered, these peptides could have been classified as AMPs. Not only is membrane activity not coextensive with antimicrobial activity, it is surprisingly common for many classes of natural peptides as one component of multiplexed functionality.”

Related Articles Read More >

Biological Toolkit of Cells Assembled Like Legos
New Technology Keeps Eye On Babies’ Movement In The Womb
Robots Won’t Replace Teachers But Can Boost Children’s Education
Artificial Placenta Created In Laboratory

DeviceTalks Weekly.

August 5, 2022
DTW Medtronic's Greg Smith lays out supply chain strategies
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech