Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

Microgels Let Medical Implants Fight Off Bacteria

March 27, 2019 By Stevens Institute of Technology

Joint replacements are among the most common elective surgeries — but around one in 100 patients suffer post-surgical infections, turning a routine procedure into an expensive and dangerous ordeal. Now, researchers at Stevens Institute of Technology have developed a “self-defensive surface” for these implants that release targeted micro-doses of antibiotics when bacteria approach, potentially sharply reducing infection rates.

The work, led by Matthew Libera, professor of materials science at Stevens, describes a method for coating implant surfaces with a lattice of microgels: flecks, each 100 times smaller than the diameter of a human hair, capable of absorbing certain antibiotics. The microgels’ behavior is regulated by electrical charges, and the electrical activity of an approaching microbe causes them to leak antibiotics, preventing infections from taking root.

Microgels could be applied to a wide range of medical devices, including heart valves, tissue scaffolds, and even surgical sutures — and with the market for hip implants alone forecasted to reach $9.1 billion by 2024, the technology has significant commercial potential. The United States Army, which helped fund the research, is also interested in deploying the technology in field hospitals, where infections currently occur in a quarter of combat injuries.

“The potential impact for patients, and for the healthcare system, is tremendous,” said Libera, who chairs the Stevens Conference on Bacteria-Material Interactions. Stevens doctorate candidate Jing Liang and biomedical engineering professor Hongjun Wang collaborated on the study, which appears in the journal Biomaterials.

Post-surgical infections are tough to beat because as microbes colonize surfaces, they form antibiotic-resistant layers called biofilms. Libera and his team disrupt this cycle by killing microbes before they can gain a foothold. “It only takes one bacterium to cause an infection,” Libera said. “But if we can prevent infection until healing is complete, then the body can take over.”

Unlike conventional treatments that flood the whole body with antibiotics, the Stevens team’s approach is highly targeted, releasing tiny amounts of antibiotics to kill individual bacteria. That dramatically reduces the selective pressures that give rise to antibiotic-resistant “superbugs” — a big improvement over both systemic treatments and local approaches such as blending antibiotics into bone cement, releasing orders of magnitude less antibiotic into the patient’s system.

Other self-defensive surfaces currently in development rely on microbes’ metabolic byproducts to trigger the release of antibiotics — a less surefire approach than the Libera’s method, which can kill even dormant bacteria. The team’s microgels are also remarkably resilient, surviving ethanol sterilization and remaining stable for weeks at a time. Microgels also respond appropriately to human tissue, retaining their antibiotic load until it’s needed and promoting healthy bone growth around treated surfaces.

To apply microgels to a medical device such as a knee joint, surgeons could dunk the device in a specially prepared bath for a few seconds; a brief dip in a second bath would then charge the microgels with antibiotics. In theory, surgeons could prepare devices on demand, immediately before implanting them, using antibiotics tailored to a patient’s specific risk factors.

So far the approach has been tested in vitro, and the team is still working to fine-tune the microgels and enable them to deliver a wider range of antibiotics. Securing approval from the U.S. Food and Drug Administration will be tricky, given the innovative nature of the technology, but Libera’s team is working with industry partners to plan further demonstrations.

Related Articles Read More >

Verily Study Watch
Verily says its Study Watch could identify heart failure risk
A child using a medical device at home.
Device design takes the spotlight among 2024’s top health tech hazards
These 11 medical device inventions are the best of 2023, Time magazine says
A photo of a Best Buy Geek Squad employee helping a chronic care patient with a remote monitoring device.
Device manufacturers have an unexpected ally for at-home health care
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe