Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Microrobots Inspired by Nature

May 17, 2017 By Phys.org

Microrobots offer a wide range of potential treatments in healthcare, from delivering drugs to target sites to fighting heart disease and cancer. (Credit: designua / 123rf)

A revolutionary design mimics the rowing action of the cilia on single-celled Paramecium, demonstrating much faster movement than conventional microrobots.

Researchers based at South Korea’s Daegu Gyeongbuk Institute of Science and Technology (DGIST) have designed microrobots that mimic the rowing action of the cilia present on the single-celled Paramecium; an organism common in stagnant water and ponds.

Microrobots offer a wide range of potential treatments in healthcare, from delivering drugs to target sites to fighting heart disease and cancer. These robots, typically a few hundred micrometres (μm) long, are most commonly controlled via the manipulation of magnetic fields.

Usually these microrobots are powered using a propeller-like tail, where the bending of the tail both powers the robot and can be used to alter direction.

The team at DGIST made a microrobot that is 220 μm long (roughly the thickness of a sturdy sheet of paper) and 60 μm high (the diameter of an average human hair), which mimics the ciliary movement of Paramecium using eight 75 μm-long cilia on each side of its body.

The microrobots were built up from a glass substrate using a 3D laser lithography system, and later partially coated with nickel and titanium deposits. They were then remotely triggered to move and orientate with magnetic fields from eight electromagnetic coils.

One challenge of moving while immersed in fluid is described by the so-called “scallop theorem”, where, if any movement forward is mirrored backwards, the object will remain in its original position. If one thinks of a rowing boat: if the oars were not removed from the water during the recovery phase, they would move the boat back to its starting point following the drive.

To overcome this problem with their microrobot, the researchers applied a different magnetic field to the cilia during the recovery phase, changing their orientation relative to the power stroke and allowing the robot to be efficiently moved forward.

The microrobots were tested in a purified water and silicon oil mixture, and demonstrated average speeds of 340 μms-1 (about 1.5 times the microrobot’s length per second). This is between 8.6 and 25.8 times faster than the team’s previous microrobots that move using magnetic attraction.

“We’ll continually strive to experiment on microrobots so that they can move efficiently and operate well in the human body,” concludes Professor Choi Hongsoo, leader of the team at DGIST. “By mimicking the cilia’s asymmetric movement, we’ve demonstrated something that’s never been shown before.”

The next phase will be to carry out further in vitro and in vivo tests, with the longer-term goal of making these robots available for use in a range of medical treatments.

Related Articles Read More >

Biological Toolkit of Cells Assembled Like Legos
New Technology Keeps Eye On Babies’ Movement In The Womb
Robots Won’t Replace Teachers But Can Boost Children’s Education
Artificial Placenta Created In Laboratory

DeviceTalks Weekly.

June 24, 2022
How innovative design, commercial strategy is building Cala Trio’s bioelectronic medicine market
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech