Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Molecular Nano-Spies to Make Light Work of Disease Detection

January 14, 2014 By Engineering and Physical Sciences Research Council

Cartoon of DNA-containing molecular hybrids in the presence of red blood cells. (Note: cells and DNA-hybrids are shown in a stylized schematic form and are not to scale)A world of cloak-and-dagger pharmaceuticals has come a step closer with the development of stealth compounds programmed to spring into action when they receive the signal.

Researchers at the University of Nottingham’s School of Pharmacy have designed and tested large molecular complexes that will reveal their true identity only when they’ve reached their intended target, like disguised saboteurs working deep behind enemy lines.

The compounds have been developed as part of a five-year programme funded by the Engineering and Physical Sciences Research Council (EPSRC) called “Bar-Coded Materials”.

The cloak each spherical complex wears is perhaps more a plastic mac: a sheath of biocompatible polymer that encapsulates and shrouds biologically active material inside, preventing any biological interaction so long as the shield remains in place.

The smart aspect is in the DNA-based zips that hold the coat in place until triggered to undo. Because any DNA code (or “molecular cipher”) can be chosen, the release mechanism can be bar-coded so that it is triggered by a specific biomarker – for example a message from a disease gene.

What is then exposed – an active pharmaceutical compound, a molecular tag to attach to diseased tissue, or a molecular beacon to signal activation – depends on what function is needed.

Professor Cameron Alexander, who leads the project, says: “These types of switchable nanoparticles could be extremely versatile. As well as initial detection of a medical condition, they could be used to monitor the progress of diseases and courses of treatment, or adapted to deliver potent drugs at particular locations in a patient’s body. It might even become possible to use mobile phones rather than medical scanners to detect programmed responses from later generations of the devices.”

In their initial trials, the team has proved the concept works in the test tube – the switchable molecular constructs do respond as expected when presented with the right molecular signals. The group is now working hard to push their idea forwards.

An early application might be in dipstick technology – testing for specific infections in a blood or spit sample, for example. But because the polymer coating (called polyethylene glycol) is biocompatible, the researchers are hopeful that in the long run “self-authenticating medicines” based on the approach could be injected into patients, to seek out diseased tissue, and report their success.

“The key to this breakthrough has been the five-year EPSRC Leadership Fellowship awarded to me back in 2009”, Professor Alexander comments. “This has provided the stability of funding to recruit and retain an outstanding team, who have been integral to realising the ideas put forward in the Fellowship. It has also given us the freedom to explore a whole range of new concepts, as well as the time needed to test our ideas to bring this and other breakthroughs within reach”.

The team’s new results have been published in Nanoscale.

Related Articles Read More >

TE Connectivity opens global medical device prototyping center in Ireland
Prix Galien USA 2022 nominees
The 24 best medical device innovations of 2022
A portrait of Ellen Roche, MIT School of Engineering associate professor
New implant design prevents scar tissue without drugs, MIT says
UMN artificial blood vessel clinical trial
Minnesota researchers awarded $3.7M grant for artificial, bioengineered blood vessel clinical trial

DeviceTalks Weekly.

August 12, 2022
DTW – Medtronic’s Mauri brings years of patient care to top clinical, regulatory, scientific post
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • Subscribe to Print Magazine
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech