Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

MRI Device Could Bridge Neuro-Technologies for Medical Diagnostics, Increase Safety

July 20, 2017 By Phys.org

Researchers from Purdue’s College of Engineering are developing a device that when placed into existing MRI machines could allow medical professionals to perform concurrent medical imaging and recording simultaneously. The technology would allow a more effective and safe way to monitor patients for diagnostic purposes. (Credit: Shannon Kane / Purdue Research Foundation Image)

A technology being developed at Purdue University could provide an affordable, smart, self-learning device that, when placed into existing MRI machines could allow medical professionals to monitor patients more effectively and safely, by performing concurrent medical imaging and recording for diagnostic purposes.

Purdue researchers recently presented their findings, “Multimodal Imaging: MR-Compatible, Gradient Artifact free, Wireless recording system integrated with MR-scanner for Simultaneous EEG and fMRI acquisition,” at the International Society for Magnetic Resonance in Medicine conference in Honolulu, Hawaii. The article also received an ISMRM magna cum laude merit award, and power-pitch highlight, for highly-rated scientific merits.

The technology was developed by Ranajay Mandal and Nishant Babaria, graduate research assistants in Purdue’s College of Engineering, under the supervision of Zhongming Liu, an assistant professor in the Weldon School of Biomedical Engineering and the School of Electrical and Computer Engineering.

“MRI is a very common imaging tool, used in every medical domain to produce high-resolution information about the body and organs,” Babaria said. “However, when a patient is receiving an MRI scan, it is very difficult to also monitor brainwaves, ECG, or other biological signals. MRI alone does not always provide enough information to clinicians. There is tremendous scientific and clinical value in using multiple technologies together on a single platform.”

The technology being developed could work simultaneously with any MRI system to record electro-physiological signals during MRI scanning. The device aims to learn when to start and stop recording to capture useful signals during MRI operation.

“What we’ve developed is a small device that can be placed in an MRI system to serve as a platform to combine all other imaging technologies,” Mandal said. “This way the patient can be monitored for more than one diagnostic result at a time and researchers and doctors are able to obtain much more information all at once.”

Liu said the device could also reduce health risks and provide better imaging.

“Our device has a smaller footprint than a penny and could be used safely inside an MRI,” he said. “Although small, the device is very powerful and allows researchers to record, stimulate, and image the brain or other organs all through the MRI system.”

Nishant said the device also has additional features.

“We believe this device is the first of its kind. It’s wireless and directly powered and operated by the MRI. It is much more affordable than other commercial systems, and provides much better quality in neural recording and stimulation during MRI imaging,” he said. “The device has great potential to significantly improve the safety, efficacy, and precision of medical diagnostics for patients who suffer from epilepsy, Parkinson’s diseases, depression, and many more diseases.”

The technology is patented through the Purdue Research Foundation Office of Technology Commercialization.

Mandal and Babaria said they received great feedback from the conference.

“Several people, from almost a dozen universities, requested the device for their own research,” Babaria said. “We’re eager to move forward with testing so that we can finalize and get the device in the hands of those who need it.”

Related Articles Read More >

A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
An image of Abbott's Infinity deep brain stimulation (DBS) implants and leads.
How Abbott developed the first-of-its-kind Infinity DBS system
Axoft Fleuron brain-computer interface BCI probe
Axoft makes Fleuron BCI material available for purchase, inks license deal with Stanford
An illustration showing the Edwards Lifesciences Sapien M3 transcatheter mitral valve replacement (TMVR) system's valve being placed in the heart. [Image courtesy of Edwards Lifesciences]
The top nitinol cardiac medtech news of 2025 (so far)
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe