Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech

Nanowire Detects Prostate Cancer

August 17, 2016 By Ecole Polytechnique Federale de Lausanne

Ecole Polytechnique Federale de Lausanne (EPFL) researchers have used a nanowire to detect prostate cancer with greater accuracy than ever before.

Researchers at EPFL’s Integrated Systems Laboratory (LSI/STI) have developed a new type of sensor that can detect tiny quantities of these markers and thus improve diagnostic accuracy. The sensor comes in the form of a tiny wire and is ten times more sensitive than most other biosensors.

An electrical component with a memory

When doctors suspect that a patient has cancer, they look for biomarkers in their body. But it’s not easy to detect these molecules in very small quantities – blood is a very dense fluid, full of molecules and cells that get in the way.

EPFL researchers have managed to get around this obstacle by inventing a new detection technique. The trick is to trap the molecules of interest by the blood sample and then detect them in a dry environment, where measurements won’t be disturbed by all the molecules. To do this, the researchers used a Memristor – a new electrical component that can “remember” all the electrical currents that pass through it. The device has been successfully tested on the biomarker for prostate cancer, known as the Prostate Specific Antigen (PSA).

A nanowire, DNA fragments and an electric current

To begin with, fragments of modified DNA are grafted onto a silicon nanowire. The DNA is used to trap the molecules. It is modified so that it traps only the biomarkers for prostate cancer.

The wire is dipped into a cancer sample for close to an hour, giving the DNA time to get hold of the molecules. It is then dried and an electric charge is first sent through it. If there are molecules on the wire, they create resistance, which alters the wire’s conductivity in places. But this alone is not enough to accurately detect the biomarkers.

It is only when the same charge is sent through the wire a second time in the opposite direction that the molecules can be properly detected. “If the wire had no memory, the two currents’ curves would be superimposed, which means there’s no memory effect,” said Sandro Carrara, from the Integrated Systems Lab.

If the right biomarkers are trapped at the wire surface, then at the exact spot where the current reverse during the phases of sending charges into the wire, there will be a difference in the curve known as a voltage gap. It is this phenomenon that makes it possible to detect the biomarkers with so high sensitivity together with the use of modified DNA to trap the biomarkers.

For now, the technique has only been used to detect biomarkers for prostate cancer. But it could be used for all types of markers.

“We are also working with the Ludwig Institute and the CHUV hospital, which are providing us with samples and tumor extracts,” Carrara said. “Our next step is to use the same technique to detect breast cancer.”

DeviceTalks Weekly.

May 20, 2022
DeviceTalks Boston Post-Game – Editors’ Top Moments, Insulet’s Eric Benjamin on future of Omnipod 5
See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

Enewsletter Subscriptions

Enewsletter Subscriptions

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech 100 Index
  • Medical Tubing + Extrusion
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to E-newsletter
  • Attend our Monthly Webinars
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2022 WTWH Media, LLC. All Rights Reserved. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • Med Tech Resources
    • DeviceTalks Tuesdays
    • Digital Editions
    • eBooks
    • Manufacturer Search
    • Medical Device Handbook
    • MedTech 100 Index
    • Podcasts
    • Print Subscription
    • The Big 100
    • Webinars / Digital Events
    • Whitepapers
    • Video
  • 2022 Leadership in MedTech
    • 2022 Leadership Voting!
    • 2021 Winners
    • 2020 Winners
  • Women in Medtech