Medical Design and Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe

New Analysis Of Big Data Sheds Light On Cell Functions

October 27, 2016 By University of California - San Diego

(Credit: People.eku)

Researchers have developed a new way of obtaining useful information from big data in biology to better understand–and predict–what goes on inside a cell. Using genome-scale models, researchers were able to integrate multiple different data sets and discovered new biological patterns among different cellular processes. The research, led by bioengineers at the University of California San Diego, was published online Oct. 26 in Nature Communications.

Scientists have been relying more on big data to make new quantitative discoveries in biology with respect to the genome, the microbiome, personalized medicine and disease modeling, for example. With today’s technology, scientists are able to generate data about a cell’s or organism’s complete set of genes, proteins, RNA profiles, metabolites and much more–known as omic data. Using omic data, scientists can model complex biological interactions and gain a more holistic view of different cellular processes. But a challenge is analyzing and making sense of these large data sets.

“When doing big data analysis, it is important to know how all these different data types are related. Now we have a way of connecting multiple different data types to generate fundamental answers to biological questions,” said Bernhard Palsson, Galetti Professor of Bioengineering at the Jacobs School of Engineering at UC San Diego and senior author of the study.

“While all these data types are derived from the same cell, they represent processes occurring at very different scales. Our work is about getting multiple different data types synchronized so that we can understand the coordination of these processes and derive meaning from them,” said Elizabeth Brunk, a postdoctoral researcher in Palsson’s lab and a co-first author of the study.

This study is part of a larger effort to address a grand challenge posed by the National Institutes of Health called “Big Data to Knowledge”–translating large, complex biological data sets into information that can be understood based on fundamentals.

In this study, researchers collected multiple omic data types (RNA sequences, ribosome profiles, protein data, metabolic data) from E. coli grown in different growth environments. The team then integrated these different data types into next-generation genome-scale models of metabolism, which were developed in Palsson’s lab.

They examined the relationships between omic data types and discovered new regularities, which are biological consistencies throughout a change in environment. Among the regularities they found were that during protein translation, ribosomes consistently pause at particular sites along a messenger RNA transcript, and that these pause sites dictate the protein’s three-dimensional structure.

Pause sites exist so that a protein has time to fold and form its overall shape, which is important for the protein to function correctly, Palsson explained. This knowledge is useful for studying cancer biology. If a tumor has a genetic mutation that eliminates a pause site, translation will yield a protein that’s not folded correctly and malfunctions.

“Now we have a fundamental explanation for these pause sites that we didn’t have before. It’s as if we’re witnessing an intricate dance with a certain rhythm to make sure that a protein is formed the right way,” Palsson said.

The team also developed what’s called a parameterized model that can be used to predict which genes are expressed when a cell experiences a change in environment.

“Thanks to the high-quality topological information provided in the genome-scale models developed by Dr. Palsson’s lab, we can obtain a better understanding of the connection between genes, proteins and metabolites and place multi-omic data into the context of these biochemical networks,” Brunk said.

Related Articles Read More >

An illustration of Embolization Inc.'s Nitinol Enhanced Device (NED).
This nitinol vascular embolization device has another shape memory material up its sleeve
A photo of nitinol, a nickel-titanium alloy used for medical devices such as stents, heart valves, catheters and orthopedics.
What is nitinol and where is it used?
July 2025 edition: The Surgical Robotics issue, featuring Capstan Medical, J&J and Zimmer Biomet
A photo of Capstan Medical's mitral valve implant, which uses nitinol.
Capstan Medical’s R&D head discusses the heart valve and robotics startup’s tech, engineering challenges and solutions, advice for others in medtech and how to join his team
“mdo
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest medical device business news, application and technology trends.

DeviceTalks Weekly

See More >

MDO Digital Edition

Digital Edition

Subscribe to Medical Design & Outsourcing. Bookmark, share and interact with the leading medical design engineering magazine today.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
DeviceTalks

DeviceTalks is a conversation among medical technology leaders. It's events, podcasts, webinars and one-on-one exchanges of ideas & insights.

DeviceTalks

New MedTech Resource

Medical Tubing

MassDevice

Mass Device

The Medical Device Business Journal. MassDevice is the leading medical device news business journal telling the stories of the devices that save lives.

Visit Website
MDO ad
Medical Design and Outsourcing
  • MassDevice
  • DeviceTalks
  • MedTech100 Index
  • Medical Tubing + Extrusion
  • Medical Design Sourcing
  • Drug Delivery Business News
  • Drug Discovery & Development
  • Pharmaceutical Processing World
  • R&D World
  • About Us/Contact
  • Advertise With Us
  • Subscribe to Print Magazine
  • Subscribe to our E-Newsletter
  • Listen to our Weekly Podcasts
  • Join our DeviceTalks Tuesdays Discussion

Copyright © 2025 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media LLC. Site Map | Privacy Policy | RSS

Search Medical Design & Outsourcing

  • Home
  • Medical Device Business
    • Mergers & Acquisitions
    • Financial
    • Regulatory
  • Applications
    • Cardiovascular
    • Devices
    • Imaging
    • Implantables
    • Medical Equipment
    • Orthopedic
    • Surgical
  • Technologies
    • Supplies and Components Index
    • Contract Manufacturing
    • Components
    • Electronics
    • Extrusions
    • Materials
    • Motion Control
    • Prototyping
    • Pumps
    • Tubing
  • MedTech Resources
    • Medtech Events in 2025
    • The 2024 Medtech Big 100
    • Medical Device Handbook
    • MedTech 100 Index
    • Subscribe to Print Magazine
    • DeviceTalks
    • Digital Editions
    • eBooks
    • Educational Assets
    • Manufacturer Search
    • Podcasts
    • Print Subscription
    • Webinars / Digital Events
    • Whitepapers
    • Voices
    • Views
    • Video
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Women in Medtech
  • Advertise
  • Subscribe